Multiple-model control of pH neutralization plant using the SOM neural networks

P. Bashivan, A. Fatehi, E. Peymani
{"title":"Multiple-model control of pH neutralization plant using the SOM neural networks","authors":"P. Bashivan, A. Fatehi, E. Peymani","doi":"10.1109/INDCON.2008.4768811","DOIUrl":null,"url":null,"abstract":"A multiple-model adaptive controller is developed using the self-organizing map (SOM) neural network. The considered controller which we name it as multiple controller via SOM (MCSOM) is evaluated on the pH neutralization plant. An improved switching algorithm based on excitation level of plant has also been suggested for systems with noisy environments. Identification of pH plant using SOM is discussed and performance of the multiple-model controller is compared to the self tuning regulator (STR) controller.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A multiple-model adaptive controller is developed using the self-organizing map (SOM) neural network. The considered controller which we name it as multiple controller via SOM (MCSOM) is evaluated on the pH neutralization plant. An improved switching algorithm based on excitation level of plant has also been suggested for systems with noisy environments. Identification of pH plant using SOM is discussed and performance of the multiple-model controller is compared to the self tuning regulator (STR) controller.
基于SOM神经网络的pH中和装置多模型控制
采用自组织映射(SOM)神经网络设计了一种多模型自适应控制器。我们将所考虑的控制器称为通过SOM的多重控制器(MCSOM),并在pH中和装置上进行了评估。针对具有噪声环境的系统,提出了一种改进的基于对象激励水平的切换算法。讨论了用SOM对pH装置的辨识,并将多模型控制器与自整定调节器(STR)控制器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信