Predicting the Demand in Bitcoin Using Data Charts: A Convolutional Neural Networks Prediction Model

A. Ibrahim, Liam Corrigan, R. Kashef
{"title":"Predicting the Demand in Bitcoin Using Data Charts: A Convolutional Neural Networks Prediction Model","authors":"A. Ibrahim, Liam Corrigan, R. Kashef","doi":"10.1109/CCECE47787.2020.9255711","DOIUrl":null,"url":null,"abstract":"Traditional time series modeling techniques emphasize on predicting cryptocurrencies using classically structured data representation as numerical features to present the time-series datasets. In this paper, a novel approach to analyze time-series data charts using a modified Convolutional Neural Networks (CNNs) is proposed. The CNNs have been adopted to recognize subtle and undetectable patterns within images of time-series data charts. Our approach has been proven to achieve significant results, suggesting a need for further research into this new method for time series modeling, especially for Bitcoin.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Traditional time series modeling techniques emphasize on predicting cryptocurrencies using classically structured data representation as numerical features to present the time-series datasets. In this paper, a novel approach to analyze time-series data charts using a modified Convolutional Neural Networks (CNNs) is proposed. The CNNs have been adopted to recognize subtle and undetectable patterns within images of time-series data charts. Our approach has been proven to achieve significant results, suggesting a need for further research into this new method for time series modeling, especially for Bitcoin.
使用数据图预测比特币的需求:卷积神经网络预测模型
传统的时间序列建模技术强调使用经典结构化数据表示作为数字特征来表示时间序列数据集来预测加密货币。本文提出了一种利用改进的卷积神经网络(cnn)分析时间序列数据图的新方法。cnn已被用于识别时间序列数据图图像中微妙和不可检测的模式。我们的方法已被证明取得了显著的成果,这表明需要进一步研究这种时间序列建模的新方法,特别是比特币。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信