Compact Saliency Model and Architectures for Image Sensors

T. Ho-Phuoc, A. Dupret, L. Alacoque
{"title":"Compact Saliency Model and Architectures for Image Sensors","authors":"T. Ho-Phuoc, A. Dupret, L. Alacoque","doi":"10.1109/SiPS.2012.41","DOIUrl":null,"url":null,"abstract":"In this paper we present an original implementation of a compact saliency model for image sensors. The saliency model combines two features: motion and the central fixation bias. Its implementation was designed for low complexity: it relies on compact operators and requires merely about one frame memory. On-the-fly computation allows for low latency processing of \"scanline\" readout of image sensors. The results show that the proposed model is suitable for video-rate computation and exhibits better performance than the state-of-the-art model in predicting the human fixation. Moreover, a variant of the proposed model further reduce required memory by a factor of 256 while providing results similar to the state-of-the-art algorithm.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present an original implementation of a compact saliency model for image sensors. The saliency model combines two features: motion and the central fixation bias. Its implementation was designed for low complexity: it relies on compact operators and requires merely about one frame memory. On-the-fly computation allows for low latency processing of "scanline" readout of image sensors. The results show that the proposed model is suitable for video-rate computation and exhibits better performance than the state-of-the-art model in predicting the human fixation. Moreover, a variant of the proposed model further reduce required memory by a factor of 256 while providing results similar to the state-of-the-art algorithm.
图像传感器的紧凑显著性模型和结构
在本文中,我们提出了一个紧凑的图像传感器显著性模型的原始实现。显著性模型结合了两个特征:运动和中心固定偏差。它的实现是为低复杂度而设计的:它依赖于紧凑的运算符,只需要大约一帧内存。实时计算允许低延迟处理图像传感器的“扫描线”读出。结果表明,该模型适用于视频速率的计算,在预测人眼注视方面表现出比现有模型更好的性能。此外,该模型的一个变体进一步将所需内存减少了256倍,同时提供与最先进算法相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信