A GAF and CNN based Wi-Fi Network Intrusion Detection System

Rayed S. Ahmad, A. H. Ali, S. M. Kazim, Quamar Niyaz
{"title":"A GAF and CNN based Wi-Fi Network Intrusion Detection System","authors":"Rayed S. Ahmad, A. H. Ali, S. M. Kazim, Quamar Niyaz","doi":"10.1109/INFOCOMWKSHPS57453.2023.10226036","DOIUrl":null,"url":null,"abstract":"Wi-Fi networks have become ubiquitous nowadays in enterprise and home networks creating opportunities for attackers to target them. These attackers exploit various vulnerabilities in Wi-Fi networks to gain unauthorized access to networks or extract data from end users' devices. A network intrusion detection system (NIDS) is deployed to detect these attacks before they can cause any significant damages to the network's functionalities or security. In this work, we propose a deep learning based NIDS using a 2D convolutional neural network (CNN) to detect intrusions inside a Wi-Fi network. Wi-Fi frames are transformed into images using Gramian Angular Field (GAF) technique. These images are then fed to the proposed deep learning based NIDS for intrusion detection. We used a benchmark Wi-Fi intrusion datasets, AWID3, for our model development. Our proposed model is able to achieve an accuracy and f-measure of 99.77% and 99.66%, respectively.","PeriodicalId":354290,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS57453.2023.10226036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wi-Fi networks have become ubiquitous nowadays in enterprise and home networks creating opportunities for attackers to target them. These attackers exploit various vulnerabilities in Wi-Fi networks to gain unauthorized access to networks or extract data from end users' devices. A network intrusion detection system (NIDS) is deployed to detect these attacks before they can cause any significant damages to the network's functionalities or security. In this work, we propose a deep learning based NIDS using a 2D convolutional neural network (CNN) to detect intrusions inside a Wi-Fi network. Wi-Fi frames are transformed into images using Gramian Angular Field (GAF) technique. These images are then fed to the proposed deep learning based NIDS for intrusion detection. We used a benchmark Wi-Fi intrusion datasets, AWID3, for our model development. Our proposed model is able to achieve an accuracy and f-measure of 99.77% and 99.66%, respectively.
基于GAF和CNN的Wi-Fi网络入侵检测系统
如今,Wi-Fi网络在企业和家庭网络中无处不在,为攻击者提供了攻击它们的机会。这些攻击者利用Wi-Fi网络中的各种漏洞,未经授权访问网络或从最终用户的设备中提取数据。部署网络入侵检测系统(NIDS)是为了在这些攻击对网络功能或安全造成重大损害之前检测到它们。在这项工作中,我们提出了一种基于深度学习的NIDS,使用二维卷积神经网络(CNN)来检测Wi-Fi网络内部的入侵。Wi-Fi帧使用格拉曼角场(GAF)技术转换成图像。然后将这些图像馈送到基于深度学习的NIDS进行入侵检测。我们使用基准Wi-Fi入侵数据集AWID3进行模型开发。我们提出的模型能够分别达到99.77%和99.66%的精度和f-measure。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信