Consistent multirobot localization using heuristically tuned extended Kalman filter

Ruslan Masinjila, P. Payeur
{"title":"Consistent multirobot localization using heuristically tuned extended Kalman filter","authors":"Ruslan Masinjila, P. Payeur","doi":"10.1109/IRIS.2017.8250138","DOIUrl":null,"url":null,"abstract":"Probabilistic algorithms have widely been used with significant success in single-robot localization as well as mapping. However, when it comes to distributed, multirobot systems, probabilistic algorithms have a tendency to quickly converge to inconsistent, often overly optimistic estimates, whenever interdependencies in such systems are ignored. This paper presents a solution to consistent, decentralized, multirobot localization using a heuristically tuned Extended Kalman Filter. Extensive simulations show that the proposed solution is able to significantly improve the consistency of pose estimates for each robot in a system while maintaining the computational complexity of the classical Extended Kalman Filter.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Probabilistic algorithms have widely been used with significant success in single-robot localization as well as mapping. However, when it comes to distributed, multirobot systems, probabilistic algorithms have a tendency to quickly converge to inconsistent, often overly optimistic estimates, whenever interdependencies in such systems are ignored. This paper presents a solution to consistent, decentralized, multirobot localization using a heuristically tuned Extended Kalman Filter. Extensive simulations show that the proposed solution is able to significantly improve the consistency of pose estimates for each robot in a system while maintaining the computational complexity of the classical Extended Kalman Filter.
基于启发式调谐扩展卡尔曼滤波的多机器人一致性定位
概率算法在单机器人定位和地图绘制中得到了广泛的应用。然而,当涉及到分布式多机器人系统时,概率算法往往会迅速收敛到不一致的,通常是过于乐观的估计,每当这些系统中的相互依赖性被忽略时。本文提出了一种使用启发式调谐扩展卡尔曼滤波器的一致、分散、多机器人定位的解决方案。大量的仿真表明,该方法能够显著提高系统中每个机器人姿态估计的一致性,同时保持经典扩展卡尔曼滤波的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信