A Tensor-Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks

T. Getu, W. Ajib, R. Landry, Georges Kaddoum
{"title":"A Tensor-Based Spectrum Sensing Technique for MIMO Cognitive Radio Networks","authors":"T. Getu, W. Ajib, R. Landry, Georges Kaddoum","doi":"10.1109/GlobalSIP45357.2019.8969440","DOIUrl":null,"url":null,"abstract":"Despite the numerous spectrum sensing techniques, the existing techniques fail in providing an efficient spectrum sensing whenever a hidden terminal problem arises. Meanwhile, this problem can happen at any time in any severely fading primary-to-secondary channels resulting in very low primary signal-to-noise ratios (SNRs) and hence ineffective detection of the primary user in a cognitive radio (CR). Towards overcoming this problem, by introducing a tensor-based hypothesis testing framework, this paper proposes an efficient tensor-based detector (TBD) for a multiple-input multiple-output (MIMO) CR networks over multi-path fading channels. Monte-Carlo simulations demonstrate that TBD outperforms the generalized likelihood ratio test (GLRT) detector and maximum-minimum eigenvalue (MME) detector, especially in the very low SNR regime which is a manifestation of the hidden terminal problem.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the numerous spectrum sensing techniques, the existing techniques fail in providing an efficient spectrum sensing whenever a hidden terminal problem arises. Meanwhile, this problem can happen at any time in any severely fading primary-to-secondary channels resulting in very low primary signal-to-noise ratios (SNRs) and hence ineffective detection of the primary user in a cognitive radio (CR). Towards overcoming this problem, by introducing a tensor-based hypothesis testing framework, this paper proposes an efficient tensor-based detector (TBD) for a multiple-input multiple-output (MIMO) CR networks over multi-path fading channels. Monte-Carlo simulations demonstrate that TBD outperforms the generalized likelihood ratio test (GLRT) detector and maximum-minimum eigenvalue (MME) detector, especially in the very low SNR regime which is a manifestation of the hidden terminal problem.
基于张量的MIMO认知无线网络频谱感知技术
尽管现有的频谱感知技术有很多,但当出现终端隐藏问题时,现有的技术无法提供有效的频谱感知。同时,在任何严重衰落的主从信道中,该问题可能在任何时间发生,导致主信噪比(SNRs)非常低,从而无法有效检测认知无线电(CR)中的主用户。为了克服这一问题,本文通过引入基于张量的假设检验框架,针对多径衰落信道上的多输入多输出(MIMO) CR网络,提出了一种高效的基于张量的检测器(TBD)。蒙特卡罗仿真表明,TBD优于广义似然比检验(GLRT)检测器和最大最小特征值检测器,特别是在极低信噪比区域,这是隐藏终端问题的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信