{"title":"Simple Data Augmentation for Multilingual NLU in Task Oriented Dialogue Systems","authors":"Samuel Louvan, B. Magnini","doi":"10.4000/books.aaccademia.8648","DOIUrl":null,"url":null,"abstract":"Data augmentation has shown potential in alleviating data scarcity for Natural Language Understanding (e.g. slot filling and intent classification) in task-oriented dialogue systems. As prior work has been mostly experimented on English datasets, we focus on five different languages, and consider a setting where limited data are available. We investigate the effectiveness of non-gradient based augmentation methods, involving simple text span substitutions and syntactic manipulations. Our experiments show that (i) augmentation is effective in all cases, particularly for slot filling; and (ii) it is beneficial for a joint intent-slot model based on multilingual BERT, both for limited data settings and when full training data is used.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Data augmentation has shown potential in alleviating data scarcity for Natural Language Understanding (e.g. slot filling and intent classification) in task-oriented dialogue systems. As prior work has been mostly experimented on English datasets, we focus on five different languages, and consider a setting where limited data are available. We investigate the effectiveness of non-gradient based augmentation methods, involving simple text span substitutions and syntactic manipulations. Our experiments show that (i) augmentation is effective in all cases, particularly for slot filling; and (ii) it is beneficial for a joint intent-slot model based on multilingual BERT, both for limited data settings and when full training data is used.