A Two-phase Constrained Multi-Objective Evolutionary Algorithm Based on the Constrained Decomposition Approach

Haiyang Xu, Xinye Cai, Zhenhua Li, Zhun Fan
{"title":"A Two-phase Constrained Multi-Objective Evolutionary Algorithm Based on the Constrained Decomposition Approach","authors":"Haiyang Xu, Xinye Cai, Zhenhua Li, Zhun Fan","doi":"10.1109/CCIS53392.2021.9754609","DOIUrl":null,"url":null,"abstract":"As existing multi-objective constraint handling methods have defiencies under the complex constraints, a constrained multi-objective optimization algorithm (C-TPEA) with two-phase constraint handling is proposed in this paper. Unlike the existing algorithms, which pay more attention to feasibility, C-TPEA aims to better balance convergence, diversity and feasibility. In the first phase, C-TPEA explores the entire space without considering the constraints, the working population can go through the complex infeasible regions and avoid local optimum. In the second phase, the algorithm adds feasibility considerations and the working population gradually converges to the constraint boundary. In the experimental studies, the performance of C-TPEA on CMOPs has been verified.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As existing multi-objective constraint handling methods have defiencies under the complex constraints, a constrained multi-objective optimization algorithm (C-TPEA) with two-phase constraint handling is proposed in this paper. Unlike the existing algorithms, which pay more attention to feasibility, C-TPEA aims to better balance convergence, diversity and feasibility. In the first phase, C-TPEA explores the entire space without considering the constraints, the working population can go through the complex infeasible regions and avoid local optimum. In the second phase, the algorithm adds feasibility considerations and the working population gradually converges to the constraint boundary. In the experimental studies, the performance of C-TPEA on CMOPs has been verified.
基于约束分解方法的两阶段约束多目标进化算法
针对现有多目标约束处理方法在复杂约束条件下存在的不足,提出了一种两阶段约束处理的约束多目标优化算法(C-TPEA)。与现有算法更注重可行性不同,C-TPEA旨在更好地平衡收敛性、多样性和可行性。在第一阶段,C-TPEA在不考虑约束的情况下对整个空间进行探索,劳动人口可以通过复杂的不可行区域,避免局部最优。在第二阶段,算法加入可行性考虑,工作人口逐渐收敛到约束边界。在实验研究中,验证了C-TPEA在CMOPs上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信