Random noise attenuation in 3D seismic data by iterative block tensor singular value thresholding

R. Anvari, A. R. Kahoo, M. Mohammadi, A. Pouyan
{"title":"Random noise attenuation in 3D seismic data by iterative block tensor singular value thresholding","authors":"R. Anvari, A. R. Kahoo, M. Mohammadi, A. Pouyan","doi":"10.1109/ICSPIS.2017.8311609","DOIUrl":null,"url":null,"abstract":"The principal component analysis (PCA) is one of the most widely used technique in two-dimensional data analysis which uses singular value decomposition of matrix data and extracts its low-rank components. Using the PCA, seismic signals are represented in a sparse way which is a useful and popular methodology in signal-processing applications. Tensor principal component analysis (TPCA) as a multi-linear extension of principal component analysis, converts a set of correlated measurements into several principal components. In this paper, based on the singular value decomposition and extracting low-rank component as the denoised data, we used a new version of TPCA for denoising 3D seismic data in which, tensor data split into a number of blocks of the same size. The low-rank component of each block tensor is extracted using iterative tensor singular value thresholding method. The principal components of the multi-way data are the concatenation of all the low-rank components of all the block tensors. To demonstrate the performance of the proposed method for denoising 3D seismic data, we apply it to a 3D synthetic seismic data and a 3D real seismic data.","PeriodicalId":380266,"journal":{"name":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS.2017.8311609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The principal component analysis (PCA) is one of the most widely used technique in two-dimensional data analysis which uses singular value decomposition of matrix data and extracts its low-rank components. Using the PCA, seismic signals are represented in a sparse way which is a useful and popular methodology in signal-processing applications. Tensor principal component analysis (TPCA) as a multi-linear extension of principal component analysis, converts a set of correlated measurements into several principal components. In this paper, based on the singular value decomposition and extracting low-rank component as the denoised data, we used a new version of TPCA for denoising 3D seismic data in which, tensor data split into a number of blocks of the same size. The low-rank component of each block tensor is extracted using iterative tensor singular value thresholding method. The principal components of the multi-way data are the concatenation of all the low-rank components of all the block tensors. To demonstrate the performance of the proposed method for denoising 3D seismic data, we apply it to a 3D synthetic seismic data and a 3D real seismic data.
基于迭代块张量奇异值阈值法的三维地震数据随机噪声抑制
主成分分析(PCA)是二维数据分析中应用最广泛的技术之一,它对矩阵数据进行奇异值分解,提取其低秩成分。利用主成分分析,地震信号以稀疏的方式表示,这是信号处理应用中一种有用且流行的方法。张量主成分分析(TPCA)是主成分分析的多线性扩展,它将一组相关测量值转换成若干个主成分。本文在奇异值分解的基础上,提取低秩分量作为去噪数据,采用新版本的TPCA对三维地震数据进行去噪,将张量数据分割成多个相同大小的块。采用迭代张量奇异值阈值法提取各块张量的低秩分量。多路数据的主成分是所有块张量的所有低秩成分的连接。为了证明该方法对三维地震数据去噪的有效性,我们将其应用于三维合成地震数据和三维真实地震数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信