Generalized Monge gauge

S. Mazharimousavi, S. Forghani, S. N. Abtahi
{"title":"Generalized Monge gauge","authors":"S. Mazharimousavi, S. Forghani, S. N. Abtahi","doi":"10.1142/S0219887817500621","DOIUrl":null,"url":null,"abstract":"Monge gauge in differential geometry is generalized. The original Monge gauge is based on a surface defined as a height function $h(x,y)$ above a flat reference plane. The total curvature and the Gaussian curvature are found in terms of the height function. Getting benefits from our mathematical knowledge of general relativity, we shall extend the Monge gauge toward more complicated surfaces. Here in this study we consider the height function above a curved surface namely a sphere of radius $R$. The proposed height function is a function of $\\theta $ and $\\varphi $ on a closed interval. We find the first, second fundamental forms and the total and Gaussian curvatures in terms of the new height function. Some specific limits are discussed and two illustrative examples are given.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219887817500621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Monge gauge in differential geometry is generalized. The original Monge gauge is based on a surface defined as a height function $h(x,y)$ above a flat reference plane. The total curvature and the Gaussian curvature are found in terms of the height function. Getting benefits from our mathematical knowledge of general relativity, we shall extend the Monge gauge toward more complicated surfaces. Here in this study we consider the height function above a curved surface namely a sphere of radius $R$. The proposed height function is a function of $\theta $ and $\varphi $ on a closed interval. We find the first, second fundamental forms and the total and Gaussian curvatures in terms of the new height function. Some specific limits are discussed and two illustrative examples are given.
广义蒙日规
推广了微分几何中的蒙格规范。最初的蒙日量规是基于一个平面之上定义为高度函数$h(x,y)$的平面。总曲率和高斯曲率是用高度函数表示的。利用广义相对论的数学知识,我们将把蒙日规范扩展到更复杂的表面。在本研究中,我们考虑曲面上的高度函数,即半径为$R$的球体。所提出的高度函数是$\theta $和$\varphi $在封闭区间上的函数。我们找到了第一种,第二种基本形式以及用新的高度函数表示的总曲率和高斯曲率。讨论了一些具体的极限,并给出了两个示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信