Sarcasm Detection in Indonesian Tweets Using Hyperbole Features

Novitasari Arlim, Siti Kania Kushadiani, S. Riyanto, Rodiah Rodiah, Rini Arianty, Maukar Maukar, Shidiq Al Hakim, A. Siagian
{"title":"Sarcasm Detection in Indonesian Tweets Using Hyperbole Features","authors":"Novitasari Arlim, Siti Kania Kushadiani, S. Riyanto, Rodiah Rodiah, Rini Arianty, Maukar Maukar, Shidiq Al Hakim, A. Siagian","doi":"10.1145/3575882.3575908","DOIUrl":null,"url":null,"abstract":"Since sarcasm has inverse meaning from what is said or written, it is very hard to detect sarcasm. Therefore, detecting sarcasm is an important task in Natural Language Processing (NLP) field. In this study, we use interjection, intensifier, capital letters, elongated words, and punctuation marks as hyperbole features to detect sarcasm in Indonesian tweets. Particularly, these hyperbole features are utilized by Support Vector Machine (SVM), Random Forest (RF), and RF+Bagging to classify Indonesian tweets in our testing data as sarcasm or not-sarcasm. English tweets obtained from Kaggle and SemEval are employed as our training data, while Indonesian tweets obtained from Drone Emprit are used as the testing data. Our experimental results show that our model with hyperbole features classifies more the tweets in the testing data as sarcasm than that without hyperbole ones. Our observation indicates that using hyperbole features could contribute well to detecting sarcasm.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since sarcasm has inverse meaning from what is said or written, it is very hard to detect sarcasm. Therefore, detecting sarcasm is an important task in Natural Language Processing (NLP) field. In this study, we use interjection, intensifier, capital letters, elongated words, and punctuation marks as hyperbole features to detect sarcasm in Indonesian tweets. Particularly, these hyperbole features are utilized by Support Vector Machine (SVM), Random Forest (RF), and RF+Bagging to classify Indonesian tweets in our testing data as sarcasm or not-sarcasm. English tweets obtained from Kaggle and SemEval are employed as our training data, while Indonesian tweets obtained from Drone Emprit are used as the testing data. Our experimental results show that our model with hyperbole features classifies more the tweets in the testing data as sarcasm than that without hyperbole ones. Our observation indicates that using hyperbole features could contribute well to detecting sarcasm.
利用夸张特征检测印尼语推文中的讽刺语
因为讽刺与所说或所写的意思相反,所以很难发现讽刺。因此,反讽检测是自然语言处理(NLP)领域的一项重要任务。在本研究中,我们使用感叹词、加强词、大写字母、加长词和标点符号作为夸张特征来检测印尼推文中的讽刺。特别地,这些夸张的特征被支持向量机(SVM)、随机森林(RF)和RF+Bagging用来将我们测试数据中的印尼推文分类为讽刺或非讽刺。从Kaggle和SemEval获取的英文tweets作为我们的训练数据,从Drone Emprit获取的印尼语tweets作为测试数据。实验结果表明,与不使用夸张特征的模型相比,使用夸张特征的模型对测试数据中的推文进行了更多的讽刺分类。我们的观察表明,使用夸张特征可以很好地检测讽刺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信