Neural network model for multidimensional data classification via clustering with data filtering support

R. Forgác, R. Krakovsky
{"title":"Neural network model for multidimensional data classification via clustering with data filtering support","authors":"R. Forgác, R. Krakovsky","doi":"10.1109/SISY.2012.6339490","DOIUrl":null,"url":null,"abstract":"The paper introduces a neural network model for multidimensional classification via clustering with data filtering support that consists of two neural networks. The first neural network based on Pulse Coupled Neural Network (PCNN) solves dimension reduction and generates appropriate number of features for final classification. The second neural network Projective Adaptive Resonance Theory (PART) solves classification via clustering. The clustering usage is very effective in this case because the proposed model after a small modification of clustering algorithm allows filtering of unwanted data. It means that the proposed neural network model is sensitive to predefined number of classification classes only and all other data that do not belong to the predefined classes are filtered in to separate cluster.","PeriodicalId":207630,"journal":{"name":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2012.6339490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper introduces a neural network model for multidimensional classification via clustering with data filtering support that consists of two neural networks. The first neural network based on Pulse Coupled Neural Network (PCNN) solves dimension reduction and generates appropriate number of features for final classification. The second neural network Projective Adaptive Resonance Theory (PART) solves classification via clustering. The clustering usage is very effective in this case because the proposed model after a small modification of clustering algorithm allows filtering of unwanted data. It means that the proposed neural network model is sensitive to predefined number of classification classes only and all other data that do not belong to the predefined classes are filtered in to separate cluster.
支持数据过滤的聚类多维数据分类神经网络模型
介绍了一种支持数据过滤的聚类多维分类神经网络模型,该模型由两个神经网络组成。第一个基于脉冲耦合神经网络(PCNN)的神经网络解决了降维问题,并生成适当数量的特征用于最终分类。第二种神经网络投影自适应共振理论(PART)通过聚类来解决分类问题。在这种情况下,聚类的使用非常有效,因为在对聚类算法进行少量修改后提出的模型允许过滤不需要的数据。这意味着所提出的神经网络模型仅对预定义的分类类数量敏感,而所有不属于预定义类的数据都被过滤到单独的聚类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信