FuRong

Yuanhan Tian, Shengcheng Yu, Chunrong Fang, Peiyuan Li
{"title":"FuRong","authors":"Yuanhan Tian, Shengcheng Yu, Chunrong Fang, Peiyuan Li","doi":"10.1145/3377812.3382138","DOIUrl":null,"url":null,"abstract":"Automated testing has been widely used to ensure the quality of Android applications. However, incomprehensible testing results make it difficult for developers to understand and fix potential bugs. This paper proposes FuRong, a novel tool, to fuse bug reports of high-readability and strong-guiding-ability via analyzing the automated testing results on multi-devices. FuRong builds a bug model with complete context information, such as screenshots, operation sequences, and logs from multi-devices, and then leverages pretrained Decision Tree classifier (with 18 bug category labels) to classify bugs. FuRong deduplicates the classified bugs via Levenshtein distance and finally generates the easy-to-understand report, not only context information of bugs, where possible causes and fix suggestions for each bug category are also provided. An empirical study of 8 open-source Android applications with automated testing on 20 devices has been conducted, the results show the effectiveness of FuRong, which has a bug classification precision of 93.4% and a bug classification accuracy of 87.9%. Video URL: https://youtu.be/LUkFTc32B6k","PeriodicalId":421517,"journal":{"name":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377812.3382138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated testing has been widely used to ensure the quality of Android applications. However, incomprehensible testing results make it difficult for developers to understand and fix potential bugs. This paper proposes FuRong, a novel tool, to fuse bug reports of high-readability and strong-guiding-ability via analyzing the automated testing results on multi-devices. FuRong builds a bug model with complete context information, such as screenshots, operation sequences, and logs from multi-devices, and then leverages pretrained Decision Tree classifier (with 18 bug category labels) to classify bugs. FuRong deduplicates the classified bugs via Levenshtein distance and finally generates the easy-to-understand report, not only context information of bugs, where possible causes and fix suggestions for each bug category are also provided. An empirical study of 8 open-source Android applications with automated testing on 20 devices has been conducted, the results show the effectiveness of FuRong, which has a bug classification precision of 93.4% and a bug classification accuracy of 87.9%. Video URL: https://youtu.be/LUkFTc32B6k
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信