An improved YOLO V3 for small vehicles detection in aerial images

Moran Ju, Haibo Luo, Zhongbo Wang
{"title":"An improved YOLO V3 for small vehicles detection in aerial images","authors":"Moran Ju, Haibo Luo, Zhongbo Wang","doi":"10.1145/3446132.3446188","DOIUrl":null,"url":null,"abstract":"Small vehicle detection in aerial images is a challenge in computer vision because small vehicles occupy less pixels and the environment around the small vehicles is complex. To improve the detection performance for the vehicles in aerial images, we propose an improved YOLO V3. The main contributions of our work include: (1) We redesign the backbone of YOLO V3 to select suitable scales for small vehicle detection in aerial images; (2) To make the improved YOLO V3 much stronger, we redesign the loss function of original YOLO V3 by GIOU loss and Focal loss; (3) To verify the performance of improved YOLO V3, we do the comparative experiments on VEDAI dataset. The experimental results show that the proposed method has obtained better performance than original YOLO V3 for small vehicle detection in aerial image.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"894 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Small vehicle detection in aerial images is a challenge in computer vision because small vehicles occupy less pixels and the environment around the small vehicles is complex. To improve the detection performance for the vehicles in aerial images, we propose an improved YOLO V3. The main contributions of our work include: (1) We redesign the backbone of YOLO V3 to select suitable scales for small vehicle detection in aerial images; (2) To make the improved YOLO V3 much stronger, we redesign the loss function of original YOLO V3 by GIOU loss and Focal loss; (3) To verify the performance of improved YOLO V3, we do the comparative experiments on VEDAI dataset. The experimental results show that the proposed method has obtained better performance than original YOLO V3 for small vehicle detection in aerial image.
改进的YOLO V3用于航拍图像中的小型车辆检测
航空图像中的小型车辆检测是计算机视觉中的一个挑战,因为小型车辆占用的像素较少,并且周围环境复杂。为了提高航拍图像中车辆的检测性能,我们提出了一种改进的YOLO V3。本文的主要贡献包括:(1)重新设计了YOLO V3的主干,选择了适合航拍图像中小型车辆检测的尺度;(2)为了使改进后的YOLO V3更强,我们通过GIOU损耗和Focal损耗对原YOLO V3的损失函数进行了重新设计;(3)为了验证改进的YOLO V3的性能,我们在VEDAI数据集上进行了对比实验。实验结果表明,该方法在航拍图像中对小型车辆的检测效果优于原来的YOLO V3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信