{"title":"An improved double-population genetic algorithm for vehicle routing problem with soft time windows","authors":"Weimin Ma, Yonghuang Hu, Yang Zhou","doi":"10.1109/ICSESS.2010.5552380","DOIUrl":null,"url":null,"abstract":"This study primarily focuses on solving the vehicle routing problem with soft time windows (VRPSTW) by applying an improved double-population genetic algorithm (DPGA). The traditional single-population genetic algorithm (SPGA) in solving vehicle routing problem usually traps in local optimum or consumes considerable time. In this paper two different initialization methods — random initialization method and construction initialization method are introduced to frame the improved double-population genetic algorithm. The computation experiment is provided to compare the improved double-population genetic algorithm with the SPGA, and the final outcome effectively proves the superiority of the novel algorithm.","PeriodicalId":264630,"journal":{"name":"2010 IEEE International Conference on Software Engineering and Service Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Engineering and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2010.5552380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study primarily focuses on solving the vehicle routing problem with soft time windows (VRPSTW) by applying an improved double-population genetic algorithm (DPGA). The traditional single-population genetic algorithm (SPGA) in solving vehicle routing problem usually traps in local optimum or consumes considerable time. In this paper two different initialization methods — random initialization method and construction initialization method are introduced to frame the improved double-population genetic algorithm. The computation experiment is provided to compare the improved double-population genetic algorithm with the SPGA, and the final outcome effectively proves the superiority of the novel algorithm.