Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model

Meng Lian, Bo Liu, Jing Luo
{"title":"Prediction of Traffic Conflict in Freeway Merging Area Based on Bayesian Model","authors":"Meng Lian, Bo Liu, Jing Luo","doi":"10.1109/ISTTCA53489.2021.9654586","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).","PeriodicalId":383266,"journal":{"name":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Symposium on Traffic Transportation and Civil Architecture (ISTTCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTTCA53489.2021.9654586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of complicated traffic flow and high accident safety risks in the expressway merging area, considering the discrete and heterogeneous characteristics of traffic conflict data, a Poisson-lognormal distribution model (PLN) and the random parameters Poisson-lognormal traffic conflict model (RP-PLN) were developed; The posterior distributions of the models parameters were estimated by Bayesian method and the Markov chain Monte Carlo (MCMC) simulation. The goodness-of-fit of models were compared by using the deviance information criterion. The results show that the goodness of fit of the random parameters Poisson-lognormal traffic conflict model (RP-PLN) is higher than that of the Poisson-lognormal distribution t model (PLN).
基于贝叶斯模型的高速公路合流区交通冲突预测
针对高速公路合流区交通流复杂、事故安全风险高的问题,考虑到交通冲突数据的离散性和异质性特点,建立了泊松-对数正态分布模型(PLN)和随机参数泊松-对数正态交通冲突模型(RP-PLN);采用贝叶斯方法和马尔可夫链蒙特卡罗(MCMC)模拟估计了模型参数的后验分布。采用偏差信息准则对模型的拟合优度进行了比较。结果表明,随机参数泊松-对数正态交通冲突模型(RP-PLN)的拟合优度高于泊松-对数正态分布模型(PLN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信