Spoken Language Identification Using Bidirectional LSTM Based LID Sequential Senones

H. Muralikrishna, P. Sapra, Anuksha Jain, Dileep Aroor Dinesh
{"title":"Spoken Language Identification Using Bidirectional LSTM Based LID Sequential Senones","authors":"H. Muralikrishna, P. Sapra, Anuksha Jain, Dileep Aroor Dinesh","doi":"10.1109/ASRU46091.2019.9003947","DOIUrl":null,"url":null,"abstract":"The effectiveness of features used to represent speech utterances influences the performance of spoken language identification (LID) systems. Recent LID systems use bottleneck features (BNFs) obtained from deep neural networks (DNNs) to represent the utterances. These BNFs do not encode language-specific features. The recent advances in DNNs have led to the usage of effective language-sensitive features such as LID-senones, obtained using convolutional neural network (CNN) based architecture. In this work, we propose a novel approach to obtain LID-senones. The proposed approach combines BNF with bidirectional long short-term memory (BLSTM) networks to generate LID-senones. Since each LID-senones preserve sequence information, we term it as LID-sequential-senones (LID-seq-senones). The proposed LID-seq-senones are then used for LID in two ways. In the first approach, we propose to build an end-to-end structure with BLSTM as front end LID-seq-senones extractor followed by a fully connected classification layer. In the second approach, we consider each utterance as a sequence of LID-seq-senones and propose to use support vector machine (SVM) with sequence kernel (GMM-based segment level pyramid match kernel) to classify the utterance. The effectiveness of proposed representation is evaluated on Oregon graduate institute multi-language telephone speech corpus (OGI-TS) and IIT Madras Indian language corpus (IITM-IL).","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The effectiveness of features used to represent speech utterances influences the performance of spoken language identification (LID) systems. Recent LID systems use bottleneck features (BNFs) obtained from deep neural networks (DNNs) to represent the utterances. These BNFs do not encode language-specific features. The recent advances in DNNs have led to the usage of effective language-sensitive features such as LID-senones, obtained using convolutional neural network (CNN) based architecture. In this work, we propose a novel approach to obtain LID-senones. The proposed approach combines BNF with bidirectional long short-term memory (BLSTM) networks to generate LID-senones. Since each LID-senones preserve sequence information, we term it as LID-sequential-senones (LID-seq-senones). The proposed LID-seq-senones are then used for LID in two ways. In the first approach, we propose to build an end-to-end structure with BLSTM as front end LID-seq-senones extractor followed by a fully connected classification layer. In the second approach, we consider each utterance as a sequence of LID-seq-senones and propose to use support vector machine (SVM) with sequence kernel (GMM-based segment level pyramid match kernel) to classify the utterance. The effectiveness of proposed representation is evaluated on Oregon graduate institute multi-language telephone speech corpus (OGI-TS) and IIT Madras Indian language corpus (IITM-IL).
基于双向LSTM的LID序列信号的口语识别
语音特征的有效性影响着语音识别系统的性能。最近的LID系统使用从深度神经网络(dnn)中获得的瓶颈特征(bnf)来表示话语。这些bnf不编码特定于语言的特性。dnn的最新进展导致使用有效的语言敏感特征,例如使用基于卷积神经网络(CNN)的架构获得的LID-senones。在这项工作中,我们提出了一种新的方法来获得LID-senones。该方法将BNF与双向长短期记忆(BLSTM)网络相结合,产生LID-senones。由于每个LID-senones都保留序列信息,因此我们将其称为lid - sequence -senones (LID-seq-senones)。提出的LID-seq-senones然后以两种方式用于LID。在第一种方法中,我们建议构建一个端到端结构,以BLSTM作为前端LID-seq-senones提取器,然后是一个完全连接的分类层。在第二种方法中,我们将每个话语视为一个LID-seq-senones序列,并提出使用具有序列核的支持向量机(SVM)(基于gmm的段级金字塔匹配核)对话语进行分类。在俄勒冈研究生院多语言电话语音语料库(OGI-TS)和印度理工学院马德拉斯印度语语料库(IITM-IL)上评估了所提表示的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信