Fast Data Reduction via KDE Approximation

D. Freedman, P. Kisilev
{"title":"Fast Data Reduction via KDE Approximation","authors":"D. Freedman, P. Kisilev","doi":"10.1109/DCC.2009.47","DOIUrl":null,"url":null,"abstract":"Many of today’s real world applications need to handle and analyze continually growing amounts of data, while the cost of collecting data decreases. As a result, the main technological hurdle is that the data is acquired faster than it can be processed. Data reduction methods are thus increasingly important, as they allow one to extract the most relevant and important information from giant data sets. We present one such method, based on compressing the description length of an estimate of the probability distribution of a set points.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many of today’s real world applications need to handle and analyze continually growing amounts of data, while the cost of collecting data decreases. As a result, the main technological hurdle is that the data is acquired faster than it can be processed. Data reduction methods are thus increasingly important, as they allow one to extract the most relevant and important information from giant data sets. We present one such method, based on compressing the description length of an estimate of the probability distribution of a set points.
通过KDE近似快速数据缩减
当今现实世界中的许多应用程序都需要处理和分析不断增长的数据量,而收集数据的成本却在下降。因此,主要的技术障碍是获取数据的速度比处理数据的速度快。因此,数据简化方法变得越来越重要,因为它们允许人们从庞大的数据集中提取最相关和最重要的信息。我们提出了一种这样的方法,基于压缩集点概率分布估计的描述长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信