Learning-based hybrid control of closed-kinematic chain robotic end-effectors

C. Nguyen, F. Pooran, T. Premack
{"title":"Learning-based hybrid control of closed-kinematic chain robotic end-effectors","authors":"C. Nguyen, F. Pooran, T. Premack","doi":"10.1109/ISIC.1988.65489","DOIUrl":null,"url":null,"abstract":"The authors propose a control scheme that combines the concepts of hybrid control and learning control for controlling force and position of a six-degree-of-freedom robotic end-effector with a closed-kinematic chain mechanism, which performs repeatable tasks. The control scheme consists of two control systems: the hybrid control system and the learning control system. The hybrid control system is composed of two feedback loops, a position loop and a force loop, which produce inputs to end-effector actuators, based on errors in position and contact forces of selected degrees of freedom. The learning control system, consisting of two proportional-derivative type learning controllers also arranged in a hybrid structure, provides additional inputs to the actuators to improve the end-effector performance after each trial. Experimental studies performed on a two-degree-of-freedom end-effector show that the control scheme provides path tracking with satisfactory precision while maintaining contact forces with minimal errors after several trials.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors propose a control scheme that combines the concepts of hybrid control and learning control for controlling force and position of a six-degree-of-freedom robotic end-effector with a closed-kinematic chain mechanism, which performs repeatable tasks. The control scheme consists of two control systems: the hybrid control system and the learning control system. The hybrid control system is composed of two feedback loops, a position loop and a force loop, which produce inputs to end-effector actuators, based on errors in position and contact forces of selected degrees of freedom. The learning control system, consisting of two proportional-derivative type learning controllers also arranged in a hybrid structure, provides additional inputs to the actuators to improve the end-effector performance after each trial. Experimental studies performed on a two-degree-of-freedom end-effector show that the control scheme provides path tracking with satisfactory precision while maintaining contact forces with minimal errors after several trials.<>
基于学习的闭动链机器人末端执行器混合控制
提出了一种结合混合控制和学习控制概念的六自由度机器人末端执行器的力和位置控制方案,该控制方案具有可重复执行任务的闭动链机构。该控制方案包括两个控制系统:混合控制系统和学习控制系统。混合控制系统由位置环和力环两个反馈环组成,它们根据所选自由度的位置误差和接触力向末端执行器产生输入。由两个比例导数型学习控制器组成的学习控制系统也以混合结构布置,在每次试验后为执行器提供额外的输入,以提高末端执行器的性能。在一个二自由度末端执行器上进行的实验研究表明,该控制方案在多次试验后能够以最小的误差保持接触力的同时,提供满意的路径跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信