Distributed training for spatio-temporal neural networks

Yanqiu Yang, Xin Yan, Zhongjie Lei
{"title":"Distributed training for spatio-temporal neural networks","authors":"Yanqiu Yang, Xin Yan, Zhongjie Lei","doi":"10.1117/12.2685449","DOIUrl":null,"url":null,"abstract":"For the training of spatio-temporal sensing data, most of the existing methods are centralized or combined with federated learning, but in some scenarios only fully distributed training can be performed. And the existing methods basically assume that the topology of the agent is fixed, but sometimes the topology changes dynamically. Therefore, this paper combines the (sub)gradient projection method to realize a distributed training method for spatio-temporal sensing data. Our method is not only suitable for scenarios where the agent topology is fixed, but also for scenarios where the topology changes dynamically.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the training of spatio-temporal sensing data, most of the existing methods are centralized or combined with federated learning, but in some scenarios only fully distributed training can be performed. And the existing methods basically assume that the topology of the agent is fixed, but sometimes the topology changes dynamically. Therefore, this paper combines the (sub)gradient projection method to realize a distributed training method for spatio-temporal sensing data. Our method is not only suitable for scenarios where the agent topology is fixed, but also for scenarios where the topology changes dynamically.
时空神经网络的分布式训练
对于时空传感数据的训练,现有的方法大多是集中式的或与联邦学习相结合的,但在某些场景下只能进行完全分布式的训练。现有的方法基本上假设agent的拓扑结构是固定的,但有时拓扑结构是动态变化的。因此,本文结合(次)梯度投影法,实现了一种时空传感数据的分布式训练方法。我们的方法不仅适用于代理拓扑固定的场景,也适用于拓扑动态变化的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信