Simulation Study using Average Difference Algorithm to Analyze the Outlierness Degree of Spatial Observations

Z. F. Pusdiktasari, Rahma Fitriani, E. Sumarminingsih
{"title":"Simulation Study using Average Difference Algorithm to Analyze the Outlierness Degree of Spatial Observations","authors":"Z. F. Pusdiktasari, Rahma Fitriani, E. Sumarminingsih","doi":"10.1109/ICICoS51170.2020.9298999","DOIUrl":null,"url":null,"abstract":"Attribute values are the main elements in calculating degree of outlierness of spatial objects. The problem arises when the spatial outliers with extreme values are the nearest neighbors of a central object. In this study, several scenarios are simulated to verify the effect of spatial outliers’ extreme values to the degree of outlierness of its nearest neighbors, based on Average Difference Algorithm. The results confirmed the effect can lead to falsely detected spatial outliers. The algorithm detect the true spatial outliers correctly if their values are three sigma away from the mean attribute values of its nearest neighbors.","PeriodicalId":122803,"journal":{"name":"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS51170.2020.9298999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Attribute values are the main elements in calculating degree of outlierness of spatial objects. The problem arises when the spatial outliers with extreme values are the nearest neighbors of a central object. In this study, several scenarios are simulated to verify the effect of spatial outliers’ extreme values to the degree of outlierness of its nearest neighbors, based on Average Difference Algorithm. The results confirmed the effect can lead to falsely detected spatial outliers. The algorithm detect the true spatial outliers correctly if their values are three sigma away from the mean attribute values of its nearest neighbors.
利用平均差分算法分析空间观测异常度的模拟研究
属性值是计算空间目标离群度的主要因素。当具有极值的空间离群值是中心对象的最近邻居时,问题就出现了。本研究基于平均差分算法,模拟了几种场景,验证了空间离群值的极值对其最近邻居离群度的影响。结果证实,该效应可能导致空间异常值被错误检测。该算法正确地检测出真正的空间异常值,如果它们的值离其最近邻居的平均属性值有三个西格玛的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信