Practical brain-machine interface system

H. Yeom, J. Kim, C. Chung
{"title":"Practical brain-machine interface system","authors":"H. Yeom, J. Kim, C. Chung","doi":"10.1109/IWW-BCI.2017.7858153","DOIUrl":null,"url":null,"abstract":"Over the last several decades, there have been lots of BMI studies. However, it is still difficult to use BMI system in real life. Here, we introduce our three BMI studies to overcome these problems. First, we predicted continuous movement trajectory from non-invasive MEG signals. Second, we proposed a new BMI prediction model to increase the prediction accuracy using external stereo camera. Finally, we showed that modes of the BMI system can be changed according to the user's brain state. Based on our results, we expect that practical and high accuracy BMI system will be possible by combining brain states and feedback information.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last several decades, there have been lots of BMI studies. However, it is still difficult to use BMI system in real life. Here, we introduce our three BMI studies to overcome these problems. First, we predicted continuous movement trajectory from non-invasive MEG signals. Second, we proposed a new BMI prediction model to increase the prediction accuracy using external stereo camera. Finally, we showed that modes of the BMI system can be changed according to the user's brain state. Based on our results, we expect that practical and high accuracy BMI system will be possible by combining brain states and feedback information.
实用脑机接口系统
在过去的几十年里,有很多关于BMI的研究。然而,BMI系统在实际应用中仍存在一定的困难。在这里,我们介绍三个BMI研究来克服这些问题。首先,我们从非侵入性脑电信号中预测连续运动轨迹。其次,我们提出了一种新的BMI预测模型,以提高外部立体摄像机的预测精度。最后,我们展示了BMI系统的模式可以根据用户的大脑状态进行改变。基于我们的研究结果,我们期望将大脑状态和反馈信息结合起来,实现实用的高精度BMI系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信