An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses

Yuzhao Yang, J. Darmont, F. Ravat, O. Teste
{"title":"An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses","authors":"Yuzhao Yang, J. Darmont, F. Ravat, O. Teste","doi":"10.1145/3472163.3472268","DOIUrl":null,"url":null,"abstract":"Using data warehouses to analyse multidimensional data is a significant task in company decision-making. The need for analyzing data stored in different data warehouses generates the requirement of merging them into one integrated data warehouse. The data warehouse merging process is composed of two steps: matching multidimensional components and then merging them. Current approaches do not take all the particularities of multidimensional data warehouses into account, e.g., only merging schemata, but not instances; or not exploiting hierarchies nor fact tables. Thus, in this paper, we propose an automatic merging approach for star schema-modeled data warehouses that works at both the schema and instance levels. We also provide algorithms for merging hierarchies, dimensions and facts. Eventually, we implement our merging algorithms and validate them with the use of both synthetic and benchmark datasets.","PeriodicalId":242683,"journal":{"name":"Proceedings of the 25th International Database Engineering & Applications Symposium","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Database Engineering & Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472163.3472268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using data warehouses to analyse multidimensional data is a significant task in company decision-making. The need for analyzing data stored in different data warehouses generates the requirement of merging them into one integrated data warehouse. The data warehouse merging process is composed of two steps: matching multidimensional components and then merging them. Current approaches do not take all the particularities of multidimensional data warehouses into account, e.g., only merging schemata, but not instances; or not exploiting hierarchies nor fact tables. Thus, in this paper, we propose an automatic merging approach for star schema-modeled data warehouses that works at both the schema and instance levels. We also provide algorithms for merging hierarchies, dimensions and facts. Eventually, we implement our merging algorithms and validate them with the use of both synthetic and benchmark datasets.
多维数据仓库的自动模式-实例合并方法
利用数据仓库对多维数据进行分析是企业决策中的一项重要任务。由于需要分析存储在不同数据仓库中的数据,因此需要将它们合并到一个集成的数据仓库中。数据仓库合并过程由两个步骤组成:匹配多维组件,然后合并它们。当前的方法没有考虑到多维数据仓库的所有特性,例如,只合并模式,而不合并实例;或者不利用层次结构和事实表。因此,在本文中,我们为星型模式建模的数据仓库提出了一种自动合并方法,该方法可以同时在模式和实例级别上工作。我们还提供了用于合并层次结构、维度和事实的算法。最后,我们实现了我们的合并算法,并使用合成数据集和基准数据集验证它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信