Topological Persistence in Geometry and Analysis

L. Polterovich, D. Rosen, K. Samvelyan, Jun Zhang
{"title":"Topological Persistence in Geometry and\n Analysis","authors":"L. Polterovich, D. Rosen, K. Samvelyan, Jun Zhang","doi":"10.1090/ULECT/074","DOIUrl":null,"url":null,"abstract":"The theory of persistence modules is an emerging field of algebraic topology which originated in topological data analysis. In these notes we provide a concise introduction into this field and give an account on some of its interactions with geometry and analysis. In particular, we present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, we discuss topological function theory which provides a new insight on oscillation of functions. The material should be accessible to readers with a basic background in algebraic and differential topology.","PeriodicalId":210073,"journal":{"name":"University Lecture Series","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University Lecture Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/ULECT/074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The theory of persistence modules is an emerging field of algebraic topology which originated in topological data analysis. In these notes we provide a concise introduction into this field and give an account on some of its interactions with geometry and analysis. In particular, we present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, we discuss topological function theory which provides a new insight on oscillation of functions. The material should be accessible to readers with a basic background in algebraic and differential topology.
几何与分析中的拓扑持久性
持久模块理论是代数拓扑学的一个新兴领域,它起源于拓扑数据分析。在这些笔记中,我们对这一领域作了简明的介绍,并说明了它与几何学和分析学的一些相互作用。特别地,我们提出了持久性在辛拓扑中的应用,包括辛拓扑群的几何和嵌入问题。此外,我们还讨论了拓扑函数理论,为函数的振荡提供了新的认识。材料应该易于读者在代数和微分拓扑的基本背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信