An online recommendation system based on web usage mining and Semantic Web using LCS Algorithm

Y. S. Sneha, G. Mahadevan, M. Prakash
{"title":"An online recommendation system based on web usage mining and Semantic Web using LCS Algorithm","authors":"Y. S. Sneha, G. Mahadevan, M. Prakash","doi":"10.1109/ICECTECH.2011.5941689","DOIUrl":null,"url":null,"abstract":"E commerce has changed the entire look of the world's trading business. Nowadays more and more people are willing to do B2B transactions over the internet. Semantic Web Mining aims at combining the two fast-developing research areas. Web users exhibit a variety of navigational interests through clicking a sequence of web pages. WUM is used for mining the user logs for understanding user interest and generating interesting patterns. Online recommendation and prediction is one of the web usage mining applications. The semantic information of the Web page contents is generally not included in Web. The idea is to improve the results of Recommender system and to overcome the new item problem by exploiting the new semantic structures in the Web. In this paper we present architecture for integrating semantic information about the products with web log data and generate a list of recommended products by using LCS Algorithm. The implementation shows good performance in terms of precision, recall and F1 metrics.","PeriodicalId":184011,"journal":{"name":"2011 3rd International Conference on Electronics Computer Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Electronics Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2011.5941689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

E commerce has changed the entire look of the world's trading business. Nowadays more and more people are willing to do B2B transactions over the internet. Semantic Web Mining aims at combining the two fast-developing research areas. Web users exhibit a variety of navigational interests through clicking a sequence of web pages. WUM is used for mining the user logs for understanding user interest and generating interesting patterns. Online recommendation and prediction is one of the web usage mining applications. The semantic information of the Web page contents is generally not included in Web. The idea is to improve the results of Recommender system and to overcome the new item problem by exploiting the new semantic structures in the Web. In this paper we present architecture for integrating semantic information about the products with web log data and generate a list of recommended products by using LCS Algorithm. The implementation shows good performance in terms of precision, recall and F1 metrics.
基于LCS算法的基于web使用挖掘和语义web的在线推荐系统
电子商务已经改变了世界贸易的整个面貌。现在越来越多的人愿意通过互联网进行B2B交易。语义Web挖掘旨在将这两个快速发展的研究领域结合起来。Web用户通过点击一系列Web页面来展示各种各样的导航兴趣。WUM用于挖掘用户日志,以了解用户兴趣并生成有趣的模式。在线推荐和预测是网络使用挖掘的一种应用。网页内容的语义信息一般不包含在Web中。其思想是通过利用Web中新的语义结构来改进推荐系统的结果,并克服新条目问题。本文提出了一种将产品语义信息与web日志数据相结合的体系结构,并利用LCS算法生成推荐产品列表。该实现在精度、召回率和F1指标方面表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信