Computing Popov and Hermite Forms of Rectangular Polynomial Matrices

Vincent Neiger, J. Rosenkilde, Grigory Solomatov
{"title":"Computing Popov and Hermite Forms of Rectangular Polynomial Matrices","authors":"Vincent Neiger, J. Rosenkilde, Grigory Solomatov","doi":"10.1145/3208976.3208988","DOIUrl":null,"url":null,"abstract":"We consider the computation of two normal forms for matrices over the univariate polynomials: the Popov form and the Hermite form. For matrices which are square and nonsingular, deterministic algorithms with satisfactory cost bounds are known. Here, we present deterministic, fast algorithms for rectangular input matrices. The obtained cost bound for the Popov form matches the previous best known randomized algorithm, while the cost bound for the Hermite form improves on the previous best known ones by a factor which is at least the largest dimension of the input matrix.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider the computation of two normal forms for matrices over the univariate polynomials: the Popov form and the Hermite form. For matrices which are square and nonsingular, deterministic algorithms with satisfactory cost bounds are known. Here, we present deterministic, fast algorithms for rectangular input matrices. The obtained cost bound for the Popov form matches the previous best known randomized algorithm, while the cost bound for the Hermite form improves on the previous best known ones by a factor which is at least the largest dimension of the input matrix.
计算矩形多项式矩阵的Popov和Hermite形式
我们考虑了单变量多项式上矩阵的两种标准形式的计算:波波夫形式和埃尔米特形式。对于方阵和非奇异矩阵,已知具有满意代价界的确定性算法。在这里,我们提出了矩形输入矩阵的确定性快速算法。得到的波波夫形式的代价界与之前最知名的随机化算法相匹配,而赫米特形式的代价界在之前最知名的随机化算法的基础上改进了一个因子,至少是输入矩阵的最大维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信