Thomsen Parameters Determination from Synthetic Sonic Logging Data for VTI Formation Using a Convolutional Neural Network

M. Bazulin, D. Sabitov, M. Charara
{"title":"Thomsen Parameters Determination from Synthetic Sonic Logging Data for VTI Formation Using a Convolutional Neural Network","authors":"M. Bazulin, D. Sabitov, M. Charara","doi":"10.2118/201932-ms","DOIUrl":null,"url":null,"abstract":"\n Vertical transverse isotropic (VTI) formations are commonly encountered in sedimentary basins and they are the simplest type of anisotropic formations. However, the inversion of the sonic logging data in such formations is a challenging problem for the case of wells parallel to the axis of symmetry. Most of the conventional processing techniques use only the kinematic characteristics of the wavefield, whereas sufficient information about the anisotropic parameters is contained in the amplitudes of the signal. All the elastic parameters (formation density, compressional and shear wave velocities, Thomsen parameters) cannot be retrieved without rigorous assumptions or additional data (e.g. from deviated borehole). In the present work, we perform a sonic data inversion by using a machine learning approach, more specifically, the convolutional neural network. The main advantage of the method is that the neural network processes the full waveform seismogram taking into account simultaneously the kinematic and the amplitude part of the wavefield. For the network training, a synthetic dataset was generated using the spectral element method. The results of the work demonstrate the feasibility of the method, when a seismogram is fed to the input of the neural network and elastic parameters are given as the output.","PeriodicalId":359083,"journal":{"name":"Day 2 Tue, October 27, 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 27, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/201932-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vertical transverse isotropic (VTI) formations are commonly encountered in sedimentary basins and they are the simplest type of anisotropic formations. However, the inversion of the sonic logging data in such formations is a challenging problem for the case of wells parallel to the axis of symmetry. Most of the conventional processing techniques use only the kinematic characteristics of the wavefield, whereas sufficient information about the anisotropic parameters is contained in the amplitudes of the signal. All the elastic parameters (formation density, compressional and shear wave velocities, Thomsen parameters) cannot be retrieved without rigorous assumptions or additional data (e.g. from deviated borehole). In the present work, we perform a sonic data inversion by using a machine learning approach, more specifically, the convolutional neural network. The main advantage of the method is that the neural network processes the full waveform seismogram taking into account simultaneously the kinematic and the amplitude part of the wavefield. For the network training, a synthetic dataset was generated using the spectral element method. The results of the work demonstrate the feasibility of the method, when a seismogram is fed to the input of the neural network and elastic parameters are given as the output.
利用卷积神经网络从VTI地层合成声波测井数据中确定Thomsen参数
垂直横向各向同性地层是沉积盆地中常见的各向异性地层,是最简单的各向异性地层类型。然而,对于平行于对称轴的井来说,在这种地层中声波测井数据的反演是一个具有挑战性的问题。大多数传统的处理技术只使用波场的运动学特征,而有关各向异性参数的足够信息包含在信号的振幅中。所有的弹性参数(地层密度、纵波和横波速度、Thomsen参数)如果没有严格的假设或额外的数据(例如,来自斜井眼),就无法获得。在目前的工作中,我们通过使用机器学习方法,更具体地说,是卷积神经网络来执行声波数据反演。该方法的主要优点是神经网络处理全波形地震记录时同时考虑了波场的运动部分和振幅部分。对于网络训练,采用谱元法生成合成数据集。研究结果表明,将地震记录作为神经网络的输入,并给出弹性参数作为输出,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信