The Generation Method of Simulation Scenario Sample Space Based on Sensitivity Analysis of Meta-model

Jing An, Wei Liu, Wanting Rong, Haoliang Qi
{"title":"The Generation Method of Simulation Scenario Sample Space Based on Sensitivity Analysis of Meta-model","authors":"Jing An, Wei Liu, Wanting Rong, Haoliang Qi","doi":"10.1109/ICARCE55724.2022.10046468","DOIUrl":null,"url":null,"abstract":"To ensure the feasibility and effectiveness of exploratory simulation experiments, it is necessary to take the simulation scenario sample space with acceptable scale and typical representative as input. In this paper, a method of generating simulation scenario sample space combining qualitative and quantitative analysis is proposed. This method constructs a machine learning meta-model based on simulation pre-experiment, and screens the key experimental factors based on sensitivity analysis of meta-model to determine the factor levels. Finally, the space is sampled and compressed to complete the generation of the hypothetical sample space.","PeriodicalId":416305,"journal":{"name":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCE55724.2022.10046468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure the feasibility and effectiveness of exploratory simulation experiments, it is necessary to take the simulation scenario sample space with acceptable scale and typical representative as input. In this paper, a method of generating simulation scenario sample space combining qualitative and quantitative analysis is proposed. This method constructs a machine learning meta-model based on simulation pre-experiment, and screens the key experimental factors based on sensitivity analysis of meta-model to determine the factor levels. Finally, the space is sampled and compressed to complete the generation of the hypothetical sample space.
基于元模型敏感性分析的仿真场景样本空间生成方法
为了保证探索性仿真实验的可行性和有效性,有必要将具有可接受规模和典型代表性的仿真场景样本空间作为输入。本文提出了一种定性分析与定量分析相结合的仿真场景样本空间生成方法。该方法构建了基于仿真预实验的机器学习元模型,并基于元模型的敏感性分析筛选关键实验因子,确定因子水平。最后对空间进行采样和压缩,完成假设样本空间的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信