Machine Learning Enabled Secure Collection of Phasor Data in Smart Power Grid Networks

Wassila Lalouani, M. Younis
{"title":"Machine Learning Enabled Secure Collection of Phasor Data in Smart Power Grid Networks","authors":"Wassila Lalouani, M. Younis","doi":"10.1109/MSN50589.2020.00091","DOIUrl":null,"url":null,"abstract":"In a smart power grid, phasor measurement devices provide critical status updates in order to enable stabilization of the grid against fluctuations in power demands and component failures. Particularly the trend is to employ a large number of phasor measurement units (PMUs) that are inter-networked through wireless links. We tackle the vulnerability of such a wireless PMU network to message replay and false data injection (FDI) attacks. We propose a novel approach for avoiding explicit data transmission through PMU measurements prediction. Our methodology is based on applying advanced machine learning techniques to forecast what values will be reported and associate a level of confidence in such prediction. Instead of sending the actual measurements, the PMU sends the difference between actual and predicted values along with the confidence level. By applying the same technique at the grid control or data aggregation unit, our approach implicitly makes such a unit aware of the actual measurements and enables authentication of the source of the transmission. Our approach is data-driven and varies over time; thus it increases the PMU network resilience against message replay and FDI attempts since the adversary’s messages will violate the data prediction protocol. The effectiveness of approach is validated using datasets for the IEEE 14 and IEEE 39 bus systems and through security analysis.","PeriodicalId":447605,"journal":{"name":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Mobility, Sensing and Networking (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN50589.2020.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a smart power grid, phasor measurement devices provide critical status updates in order to enable stabilization of the grid against fluctuations in power demands and component failures. Particularly the trend is to employ a large number of phasor measurement units (PMUs) that are inter-networked through wireless links. We tackle the vulnerability of such a wireless PMU network to message replay and false data injection (FDI) attacks. We propose a novel approach for avoiding explicit data transmission through PMU measurements prediction. Our methodology is based on applying advanced machine learning techniques to forecast what values will be reported and associate a level of confidence in such prediction. Instead of sending the actual measurements, the PMU sends the difference between actual and predicted values along with the confidence level. By applying the same technique at the grid control or data aggregation unit, our approach implicitly makes such a unit aware of the actual measurements and enables authentication of the source of the transmission. Our approach is data-driven and varies over time; thus it increases the PMU network resilience against message replay and FDI attempts since the adversary’s messages will violate the data prediction protocol. The effectiveness of approach is validated using datasets for the IEEE 14 and IEEE 39 bus systems and through security analysis.
机器学习支持智能电网相量数据的安全采集
在智能电网中,相量测量设备提供关键状态更新,以便在电力需求波动和组件故障时稳定电网。特别是趋势是采用大量的相量测量单元(pmu),它们通过无线链路互联。我们解决了这种无线PMU网络对消息重放和虚假数据注入(FDI)攻击的脆弱性。我们提出了一种通过PMU测量预测来避免显式数据传输的新方法。我们的方法是基于应用先进的机器学习技术来预测将报告的值,并在这种预测中关联一定程度的置信度。PMU不发送实际测量值,而是发送实际值和预测值之间的差值以及置信度。通过在网格控制或数据聚合单元上应用相同的技术,我们的方法隐式地使这样的单元意识到实际测量,并允许对传输源进行身份验证。我们的方法是数据驱动的,随着时间的推移而变化;因此,它增加了PMU网络对消息重播和FDI尝试的弹性,因为对手的消息将违反数据预测协议。使用IEEE 14和IEEE 39总线系统的数据集并通过安全性分析验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信