C. Dufour, J. Mahseredjian, J. Bélanger, J. L. Naredo
{"title":"An Advanced Real-Time Electro-Magnetic Simulator for power systems with a simultaneous state-space nodal solver","authors":"C. Dufour, J. Mahseredjian, J. Bélanger, J. L. Naredo","doi":"10.1109/TDC-LA.2010.5762905","DOIUrl":null,"url":null,"abstract":"This paper presents a simulation method that combines state-space analysis with a nodal method for the simulation of electrical systems. This paper extends the concept of a discrete companion branch equivalent of the nodal approach to state-space described systems, and enables natural coupling between them. The flexible clustering of state-space described electrical subsystems into a nodal method has the following advantages: first, the nodal admittance matrix can be constrained in size while still permitting the solution of a switched network by nodal admittance matrix on-line triangularisation. Also, each group can have a precalculation of all internal modes (caused by switches, for example) within itself, an important feature for real-time applications. Secondly, the state-space formulation enables the use of higher-level discretization methods with L-stability properties. Finally, the approach enables the coupling of complex nodal-based models like FD-line into a state-space based solver. The method is implemented in a commercial real-time simulation software tool, the Advanced Real-Time Electro-Magnetic Simulator (ARTEMiS).","PeriodicalId":222318,"journal":{"name":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC-LA.2010.5762905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
This paper presents a simulation method that combines state-space analysis with a nodal method for the simulation of electrical systems. This paper extends the concept of a discrete companion branch equivalent of the nodal approach to state-space described systems, and enables natural coupling between them. The flexible clustering of state-space described electrical subsystems into a nodal method has the following advantages: first, the nodal admittance matrix can be constrained in size while still permitting the solution of a switched network by nodal admittance matrix on-line triangularisation. Also, each group can have a precalculation of all internal modes (caused by switches, for example) within itself, an important feature for real-time applications. Secondly, the state-space formulation enables the use of higher-level discretization methods with L-stability properties. Finally, the approach enables the coupling of complex nodal-based models like FD-line into a state-space based solver. The method is implemented in a commercial real-time simulation software tool, the Advanced Real-Time Electro-Magnetic Simulator (ARTEMiS).