Research on Key Attributes of Learning Behavior Based on Rough Set

Pengyu Liu, Guiyun Zhang
{"title":"Research on Key Attributes of Learning Behavior Based on Rough Set","authors":"Pengyu Liu, Guiyun Zhang","doi":"10.1109/ICCSE.2019.8845391","DOIUrl":null,"url":null,"abstract":"MOOC becomes a common learning method in colleges and universities. Data analysis through MOOC recorded data to find key attributes that affect learner performance, this is one of the current research directions of educational big data. In this paper, using the record data of 500 learners on the MOOC platform, the rough set attribute reduction algorithm is used to mine the key attributes affecting the learner’s performance, finally get six key attributes. Describes the links between the sixkey attributes and achievements. Through the analysis and research of learning behavior data, this paper puts forward suggestions for improving the quality of MOOC learning, and provides reference for the development of MOOC.","PeriodicalId":351346,"journal":{"name":"2019 14th International Conference on Computer Science & Education (ICCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2019.8845391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

MOOC becomes a common learning method in colleges and universities. Data analysis through MOOC recorded data to find key attributes that affect learner performance, this is one of the current research directions of educational big data. In this paper, using the record data of 500 learners on the MOOC platform, the rough set attribute reduction algorithm is used to mine the key attributes affecting the learner’s performance, finally get six key attributes. Describes the links between the sixkey attributes and achievements. Through the analysis and research of learning behavior data, this paper puts forward suggestions for improving the quality of MOOC learning, and provides reference for the development of MOOC.
基于粗糙集的学习行为关键属性研究
MOOC成为高校普遍的学习方式。通过MOOC记录数据进行数据分析,发现影响学习者表现的关键属性,这是当前教育大数据的研究方向之一。本文利用MOOC平台上500个学习者的记录数据,利用粗糙集属性约简算法挖掘影响学习者表现的关键属性,最终得到6个关键属性。描述六个关键属性和成就之间的联系。本文通过对学习行为数据的分析研究,提出提高MOOC学习质量的建议,为MOOC的发展提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信