{"title":"Indicating if water is safe for human consumption using an enhanced machine learning approach","authors":"M. Nachaoui, S. Lyaqini, Marouane Chaouch","doi":"10.19139/soic-2310-5070-1703","DOIUrl":null,"url":null,"abstract":"Predicting water quality accurately is critically important in real-life water resource management. This work proposes an approach based on supervised machine learning to predict water quality. Motivated, by the success of the non-smooth loss function for supervised learning problems [22], we reformulate the learning problem as a regularized optimization problem whose fidelity term is the hinge loss function and the hypothesis space is a polynomial approximation. To deal with the non-differentiability of the loss function, a special smoothing function is proposed. Then, the obtained optimization problem is solved by an improved conjugate gradient algorithm. Finally,some experiments results are presented.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Predicting water quality accurately is critically important in real-life water resource management. This work proposes an approach based on supervised machine learning to predict water quality. Motivated, by the success of the non-smooth loss function for supervised learning problems [22], we reformulate the learning problem as a regularized optimization problem whose fidelity term is the hinge loss function and the hypothesis space is a polynomial approximation. To deal with the non-differentiability of the loss function, a special smoothing function is proposed. Then, the obtained optimization problem is solved by an improved conjugate gradient algorithm. Finally,some experiments results are presented.