T. Thang, Dang Dinh Son, Le Dang Linh, Dang Xuan Vuong, Duong Quang Tien
{"title":"ASR - VLSP 2021: Automatic Speech Recognition with Blank Label Re-weighting","authors":"T. Thang, Dang Dinh Son, Le Dang Linh, Dang Xuan Vuong, Duong Quang Tien","doi":"10.25073/2588-1086/vnucsce.321","DOIUrl":null,"url":null,"abstract":"End-to-end models have significant potential in most languages and recently proved the robustness in ASR tasks. Many robust architectures are proposed, and among many techniques, Recurrent Neural Network - Transducer (RNN-T) shows remarkable success. However, with background noise or reverb in spontaneous speech, this architecture generally suffers from high deletion error problems. For this reason, we propose the blank label re-weighting technique to improve the state-of-the-art Conformer transducer model. Our proposed system adopts the Stochastic Weight Averaging approach, stabilizing the training process. Our work achieved the first rank with a 4.17% of word error rate in Task 2 of the VLSP 2021 Competition. \n ","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
End-to-end models have significant potential in most languages and recently proved the robustness in ASR tasks. Many robust architectures are proposed, and among many techniques, Recurrent Neural Network - Transducer (RNN-T) shows remarkable success. However, with background noise or reverb in spontaneous speech, this architecture generally suffers from high deletion error problems. For this reason, we propose the blank label re-weighting technique to improve the state-of-the-art Conformer transducer model. Our proposed system adopts the Stochastic Weight Averaging approach, stabilizing the training process. Our work achieved the first rank with a 4.17% of word error rate in Task 2 of the VLSP 2021 Competition.