Temporal Convolutions for Multi-Step Quadrotor Motion Prediction

Sam Looper, Steven L. Waslander
{"title":"Temporal Convolutions for Multi-Step Quadrotor Motion Prediction","authors":"Sam Looper, Steven L. Waslander","doi":"10.1109/CRV55824.2022.00013","DOIUrl":null,"url":null,"abstract":"Model-based control methods for robotic systems such as quadrotors, autonomous driving vehicles and flexible manipulators require motion models that generate accurate predictions of complex nonlinear system dynamics over long periods of time. Temporal Convolutional Networks (TCNs) can be adapted to this challenge by formulating multi-step prediction as a sequence-to-sequence modeling problem. We present End2End-TCN: a fully convolutional architecture that integrates future control inputs to compute multi-step motion predictions in one forward pass. We demonstrate the approach with a thorough analysis of TCN performance for the quadrotor modeling task, which includes an investigation of scaling effects and ablation studies. Ultimately, End2End- Tcnprovides 55% error reduction over the state of the art in multi-step prediction on an aggressive indoor quadrotor flight d ataset. The model yields accurate predictions across 90 timestep horizons over a 900 ms interval.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Model-based control methods for robotic systems such as quadrotors, autonomous driving vehicles and flexible manipulators require motion models that generate accurate predictions of complex nonlinear system dynamics over long periods of time. Temporal Convolutional Networks (TCNs) can be adapted to this challenge by formulating multi-step prediction as a sequence-to-sequence modeling problem. We present End2End-TCN: a fully convolutional architecture that integrates future control inputs to compute multi-step motion predictions in one forward pass. We demonstrate the approach with a thorough analysis of TCN performance for the quadrotor modeling task, which includes an investigation of scaling effects and ablation studies. Ultimately, End2End- Tcnprovides 55% error reduction over the state of the art in multi-step prediction on an aggressive indoor quadrotor flight d ataset. The model yields accurate predictions across 90 timestep horizons over a 900 ms interval.
多步四旋翼运动预测的时间卷积
机器人系统(如四旋翼飞行器、自动驾驶车辆和柔性机械手)的基于模型的控制方法需要运动模型,这些模型可以长时间对复杂的非线性系统动力学进行准确预测。时间卷积网络(tcn)可以通过将多步预测作为序列到序列的建模问题来适应这一挑战。我们提出了End2End-TCN:一个完全卷积的架构,集成了未来的控制输入,以计算一个向前传递的多步运动预测。我们通过对四旋翼建模任务的TCN性能进行全面分析来证明该方法,其中包括对缩放效应和烧蚀研究的调查。最终,End2End- tcn在室内四旋翼飞行数据集的多步预测中提供了55%的误差减少。该模型在900毫秒的时间间隔内产生90个时间步的准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信