Capacity extraction in physical equivalent networks

J. Hansen, C. Potratz
{"title":"Capacity extraction in physical equivalent networks","authors":"J. Hansen, C. Potratz","doi":"10.1109/ISEMC.2015.7256211","DOIUrl":null,"url":null,"abstract":"Physical Equivalent Circuits of electronic devices are very useful for EMC root-cause analysis, because they boil down complex coupling paths into rather simple circuit schematics, displaying only relevant inductive and capacitive structures. However, their derivation can be extremely time-consuming and requires thorough understanding of the device under test. Recently, a method was proposed to derive such a circuit with the aid of a computer. Whereas the design of an inductive network is relatively straight forward, correct placement of only the relevant capacities is difficult. In frequency range of interest, there are often too few resonances to determine capacitances uniquely, revealing that capacity placement has typical properties of an ill-posed problem. Engineering intuition states that often, only few capacitances dominate the root-causes of an EMC spectrum. We present a regularization method that allows to quickly determine the C matrix with fewest number of entries via an iterative least squares minimization. We are thus able to compute a unique physically meaningful capacitance matrix of a physical equivalent circuit.","PeriodicalId":412708,"journal":{"name":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"87 37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2015.7256211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Physical Equivalent Circuits of electronic devices are very useful for EMC root-cause analysis, because they boil down complex coupling paths into rather simple circuit schematics, displaying only relevant inductive and capacitive structures. However, their derivation can be extremely time-consuming and requires thorough understanding of the device under test. Recently, a method was proposed to derive such a circuit with the aid of a computer. Whereas the design of an inductive network is relatively straight forward, correct placement of only the relevant capacities is difficult. In frequency range of interest, there are often too few resonances to determine capacitances uniquely, revealing that capacity placement has typical properties of an ill-posed problem. Engineering intuition states that often, only few capacitances dominate the root-causes of an EMC spectrum. We present a regularization method that allows to quickly determine the C matrix with fewest number of entries via an iterative least squares minimization. We are thus able to compute a unique physically meaningful capacitance matrix of a physical equivalent circuit.
物理等效网络中的容量提取
电子器件的物理等效电路对EMC的根本原因分析非常有用,因为它们将复杂的耦合路径归结为相当简单的电路原理图,只显示相关的电感和电容结构。然而,它们的推导可能非常耗时,并且需要彻底了解被测设备。最近,有人提出了一种借助计算机推导这种电路的方法。虽然电感网络的设计相对直接,但仅正确放置相关容量是困难的。在感兴趣的频率范围内,通常谐振太少,无法唯一地确定电容,这表明容量放置具有病态问题的典型性质。工程直觉表明,通常只有少数电容主导了EMC频谱的根本原因。我们提出了一种正则化方法,允许通过迭代最小二乘最小化快速确定具有最少条目数的C矩阵。因此,我们能够计算出一个物理等效电路的唯一的物理上有意义的电容矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信