Some recent work on biharmonic conformal maps

Ye-Lin Ou
{"title":"Some recent work on biharmonic conformal\n maps","authors":"Ye-Lin Ou","doi":"10.1090/conm/756/15209","DOIUrl":null,"url":null,"abstract":"This note reviews some of the recent work on biharmonic conformal maps (see \\cite{OC}, Chapter 11, for a detailed survey). It will be focused on biharmonic conformal immersions and biharmonic conformal maps between manifolds of the same dimension and their links to isoparametric functions and Yamabe type equations, though biharmonic morphisms (maps that preserve solutions of bi-Laplace equations), generalized harmonic morphisms (maps that pull back germs of harmonic functions to germs of biharmonic functions), and biharmonic conformal and Riemannian submersions will also be touched.","PeriodicalId":165273,"journal":{"name":"Geometry of Submanifolds","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry of Submanifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/756/15209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note reviews some of the recent work on biharmonic conformal maps (see \cite{OC}, Chapter 11, for a detailed survey). It will be focused on biharmonic conformal immersions and biharmonic conformal maps between manifolds of the same dimension and their links to isoparametric functions and Yamabe type equations, though biharmonic morphisms (maps that preserve solutions of bi-Laplace equations), generalized harmonic morphisms (maps that pull back germs of harmonic functions to germs of biharmonic functions), and biharmonic conformal and Riemannian submersions will also be touched.
一些关于双调和共形映射的最新研究
本文回顾了最近关于双调和共形映射的一些工作(参见\cite{OC},第11章,详细的调查)。它将集中于双调和共形浸入和同维流形之间的双调和共形映射及其与等参函数和Yamabe型方程的联系,尽管双调和态射(保留双拉普拉斯方程解的映射),广义调和态射(将调和函数的芽拉回双调和函数的芽的映射),以及双调和共形和黎曼浸入也将被触及。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信