ConceptExplorer: Visual Analysis of Concept Drifts in Multi-source Time-series Data

Xumeng Wang, Wei Chen, Jiazhi Xia, Zexian Chen, Dongshi Xu, Xiangyang Wu, Mingliang Xu, T. Schreck
{"title":"ConceptExplorer: Visual Analysis of Concept Drifts in Multi-source Time-series Data","authors":"Xumeng Wang, Wei Chen, Jiazhi Xia, Zexian Chen, Dongshi Xu, Xiangyang Wu, Mingliang Xu, T. Schreck","doi":"10.1109/VAST50239.2020.00006","DOIUrl":null,"url":null,"abstract":"Time-series data is widely studied in various scenarios, like weather forecast, stock market, customer behavior analysis. To comprehensively learn about the dynamic environments, it is necessary to comprehend features from multiple data sources. This paper proposes a novel visual analysis approach for detecting and analyzing concept drifts from multi-sourced time-series. We propose a visual detection scheme for discovering concept drifts from multiple sourced time-series based on prediction models. We design a drift level index to depict the dynamics, and a consistency judgment model to justify whether the concept drifts from various sources are consistent. Our integrated visual interface, ConceptExplorer, facilitates visual exploration, extraction, understanding, and comparison of concepts and concept drifts from multi-source time-series data. We conduct three case studies and expert interviews to verify the effectiveness of our approach.","PeriodicalId":244967,"journal":{"name":"2020 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST50239.2020.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Time-series data is widely studied in various scenarios, like weather forecast, stock market, customer behavior analysis. To comprehensively learn about the dynamic environments, it is necessary to comprehend features from multiple data sources. This paper proposes a novel visual analysis approach for detecting and analyzing concept drifts from multi-sourced time-series. We propose a visual detection scheme for discovering concept drifts from multiple sourced time-series based on prediction models. We design a drift level index to depict the dynamics, and a consistency judgment model to justify whether the concept drifts from various sources are consistent. Our integrated visual interface, ConceptExplorer, facilitates visual exploration, extraction, understanding, and comparison of concepts and concept drifts from multi-source time-series data. We conduct three case studies and expert interviews to verify the effectiveness of our approach.
ConceptExplorer:多源时间序列数据中概念漂移的可视化分析
时间序列数据在各种场景中被广泛研究,如天气预报、股票市场、客户行为分析。为了全面了解动态环境,有必要理解来自多个数据源的特征。本文提出了一种新的视觉分析方法来检测和分析多源时间序列的概念漂移。我们提出了一种基于预测模型的视觉检测方案,用于发现多源时间序列中的概念漂移。我们设计了一个漂移水平指标来描述动态,并设计了一个一致性判断模型来证明来自不同来源的概念漂移是否一致。我们集成的可视化界面,ConceptExplorer,便于从多源时间序列数据中对概念和概念漂移进行可视化探索、提取、理解和比较。我们进行了三个案例研究和专家访谈,以验证我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信