Extending Dempster Shafer method by multilayer decision template in classifier fusion

Mehdi Salkhordeh Haghighi, Abedin Vahedian, H. Yazdi
{"title":"Extending Dempster Shafer method by multilayer decision template in classifier fusion","authors":"Mehdi Salkhordeh Haghighi, Abedin Vahedian, H. Yazdi","doi":"10.1109/ISIAS.2011.6122807","DOIUrl":null,"url":null,"abstract":"In this paper, a new classifier fusion method is introduced based on a decision template structure as an extension to Dempster Shafer method. It employs multilayer neural networks as base classifiers. The idea relies on the fact that in a multilayer neural network, behavior of each layer can be a guide for modeling decision-making process. The new decision template based method constructs decision template for each layer of the neural networks including all hidden layers such that a complete model of the base classifiers decision making process is built. In the combiner part, a new strategy based on extension to Dempster Shafer method is introduced. Efficiency of this method is compared with some known benchmark datasets.","PeriodicalId":139268,"journal":{"name":"2011 7th International Conference on Information Assurance and Security (IAS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Information Assurance and Security (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2011.6122807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new classifier fusion method is introduced based on a decision template structure as an extension to Dempster Shafer method. It employs multilayer neural networks as base classifiers. The idea relies on the fact that in a multilayer neural network, behavior of each layer can be a guide for modeling decision-making process. The new decision template based method constructs decision template for each layer of the neural networks including all hidden layers such that a complete model of the base classifiers decision making process is built. In the combiner part, a new strategy based on extension to Dempster Shafer method is introduced. Efficiency of this method is compared with some known benchmark datasets.
基于多层决策模板的Dempster Shafer方法在分类器融合中的扩展
本文提出了一种基于决策模板结构的分类器融合方法,作为Dempster Shafer方法的扩展。它采用多层神经网络作为基本分类器。这个想法依赖于这样一个事实,即在多层神经网络中,每层的行为可以作为建模决策过程的指导。基于决策模板的方法为神经网络的每一层(包括所有隐层)构建决策模板,从而建立了一个完整的基分类器决策过程模型。在组合部分,介绍了一种基于Dempster Shafer方法扩展的新策略。将该方法与一些已知的基准数据集进行了效率比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信