K. Srinivasan, S. Pan, Zhigang Feng, N. Chang, T. Pawlak
{"title":"An efficient transient thermal simulation methodology for Power Management IC designs","authors":"K. Srinivasan, S. Pan, Zhigang Feng, N. Chang, T. Pawlak","doi":"10.1109/SEMI-THERM.2017.7896909","DOIUrl":null,"url":null,"abstract":"Power Management devices are becoming ubiquitous in every electronic system for achieving energy efficiency with constrained power/thermal budget. Multi-Function and Multi-Channel PMICs are becoming common design trend to support diverse voltage/power requirements of complex SoCs. In this paper, we present an approach to perform a full chip level thermal analysis with the capability to perform a detailed sub-modeling for electro-thermal analysis with Finite Element method and perform thermal-aware EM and stress analysis. The approach in transient thermal, thermal-aware EM and stress analyses includes the generation of thermal-aware chip power maps, conversion of converged thermal profiles in Power Devices to thermal loadings and detailed sub-modeling of on-chip structures for transient thermal, thermal-aware EM and thermal-induced stress analyses.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Power Management devices are becoming ubiquitous in every electronic system for achieving energy efficiency with constrained power/thermal budget. Multi-Function and Multi-Channel PMICs are becoming common design trend to support diverse voltage/power requirements of complex SoCs. In this paper, we present an approach to perform a full chip level thermal analysis with the capability to perform a detailed sub-modeling for electro-thermal analysis with Finite Element method and perform thermal-aware EM and stress analysis. The approach in transient thermal, thermal-aware EM and stress analyses includes the generation of thermal-aware chip power maps, conversion of converged thermal profiles in Power Devices to thermal loadings and detailed sub-modeling of on-chip structures for transient thermal, thermal-aware EM and thermal-induced stress analyses.