Optimizing Hyper-Phrase Queries

Dhruv Gupta, K. Berberich
{"title":"Optimizing Hyper-Phrase Queries","authors":"Dhruv Gupta, K. Berberich","doi":"10.1145/3409256.3409827","DOIUrl":null,"url":null,"abstract":"A hyper-phrase query (HPQ) consists of a sequence of phrase sets. Such queries naturally arise when attempting to spot knowledge graph (KG) facts or sets of KG facts in large document collections to establish their provenance. Our approach addresses this challenge by proposing query operators to detect text regions in documents that correspond to the HPQ as combinations of n-grams and skip-grams. The optimization lies in identifying the most cost-efficient order of query operators that can be executed to identify the text regions containing the HPQ. We show the efficiency of our optimizations on spotting facts from Wikidata in document collections amounting to more than thirty million documents.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A hyper-phrase query (HPQ) consists of a sequence of phrase sets. Such queries naturally arise when attempting to spot knowledge graph (KG) facts or sets of KG facts in large document collections to establish their provenance. Our approach addresses this challenge by proposing query operators to detect text regions in documents that correspond to the HPQ as combinations of n-grams and skip-grams. The optimization lies in identifying the most cost-efficient order of query operators that can be executed to identify the text regions containing the HPQ. We show the efficiency of our optimizations on spotting facts from Wikidata in document collections amounting to more than thirty million documents.
优化超短语查询
超短语查询(HPQ)由一系列短语集组成。当试图在大型文档集合中发现知识图(KG)事实或KG事实集以确定其来源时,自然会出现这样的查询。我们的方法通过提出查询操作符来检测文档中的文本区域,这些文本区域对应于n-grams和skip-grams的组合,从而解决了这一挑战。优化在于确定可以执行的查询操作符的最具成本效益的顺序,以标识包含HPQ的文本区域。我们展示了从维基数据的文档集合中发现事实的优化效率,这些文档集合总计超过3000万个文档。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信