Chun-Hui Chen, Chia‐Ming Yang, Liann-Be Chang, Chao‐Sung Lai
{"title":"Thickness effect of IGZO layer in light-addressable potentiometric sensor","authors":"Chun-Hui Chen, Chia‐Ming Yang, Liann-Be Chang, Chao‐Sung Lai","doi":"10.1109/AM-FPD.2016.7543666","DOIUrl":null,"url":null,"abstract":"The thickness effect of In-Ga-Zn oxide (IGZO) semiconductor layer is investigated for pH sensing in light-addressable potentiometric sensor (LAPS). pH sensing membrane is 45 nm-thick NbOx, which is directly on IGZO/ITO/glass substrate. The thickness of IGZO layer is determined by time-mode control in reactive rf sputtering. The highest photovoltage and operation frequency can be obtained in the IGZO thickness of 300 nm. pH sensitivity is about 65 mV/pH with ac signal frequency at 1 kHz. For better stability in hysteresis, further investigations on sensing membrane optimization are suggested.","PeriodicalId":422453,"journal":{"name":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AM-FPD.2016.7543666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The thickness effect of In-Ga-Zn oxide (IGZO) semiconductor layer is investigated for pH sensing in light-addressable potentiometric sensor (LAPS). pH sensing membrane is 45 nm-thick NbOx, which is directly on IGZO/ITO/glass substrate. The thickness of IGZO layer is determined by time-mode control in reactive rf sputtering. The highest photovoltage and operation frequency can be obtained in the IGZO thickness of 300 nm. pH sensitivity is about 65 mV/pH with ac signal frequency at 1 kHz. For better stability in hysteresis, further investigations on sensing membrane optimization are suggested.