TorusVis^ND: Unraveling High-Dimensional Torus Networks for Network Traffic Visualizations

Shenghui Cheng, Pradipta De, S. Jiang, K. Mueller
{"title":"TorusVis^ND: Unraveling High-Dimensional Torus Networks for Network Traffic Visualizations","authors":"Shenghui Cheng, Pradipta De, S. Jiang, K. Mueller","doi":"10.1109/VPA.2014.7","DOIUrl":null,"url":null,"abstract":"Torus networks are widely used in supercomputing. However, due to their complex topology and their large number of nodes, it is difficult for analysts to perceive the messages flow in these networks. We propose a visualization framework called TorusVisND that uses modern information visualization techniques to allow analysts to see the network and its communication patterns in a single display and control the amount of information shown via filtering in the temporal and the topology domains. For this purpose we provide three cooperating visual interfaces. The main interface is the network display. It uses two alternate graph numbering schemes -- a sequential curve and a Hilbert curve -- to unravel the 5D torus network into a single string of nodes. We then arrange these nodes onto a circle and add the communication links as line bundles in the circle interior. A node selector based on parallel coordinates and a time slicer based on ThemeRiver help users focus on certain processor groups and time slices in the network display. We demonstrate our approach via a small use case.","PeriodicalId":160141,"journal":{"name":"2014 First Workshop on Visual Performance Analysis","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 First Workshop on Visual Performance Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPA.2014.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Torus networks are widely used in supercomputing. However, due to their complex topology and their large number of nodes, it is difficult for analysts to perceive the messages flow in these networks. We propose a visualization framework called TorusVisND that uses modern information visualization techniques to allow analysts to see the network and its communication patterns in a single display and control the amount of information shown via filtering in the temporal and the topology domains. For this purpose we provide three cooperating visual interfaces. The main interface is the network display. It uses two alternate graph numbering schemes -- a sequential curve and a Hilbert curve -- to unravel the 5D torus network into a single string of nodes. We then arrange these nodes onto a circle and add the communication links as line bundles in the circle interior. A node selector based on parallel coordinates and a time slicer based on ThemeRiver help users focus on certain processor groups and time slices in the network display. We demonstrate our approach via a small use case.
TorusVis^ND:用于网络流量可视化的高维环面网络
环面网络在超级计算中得到了广泛应用。然而,由于其复杂的拓扑结构和大量的节点,分析人员很难感知这些网络中的消息流。我们提出了一个名为TorusVisND的可视化框架,该框架使用现代信息可视化技术,允许分析人员在单个显示中查看网络及其通信模式,并通过在时间和拓扑域中过滤来控制显示的信息量。为此,我们提供了三个协作的可视化界面。主界面为网络显示。它使用两种交替的图编号方案——顺序曲线和希尔伯特曲线——将5D环面网络分解为单个节点串。然后我们将这些节点排列成一个圆圈,并将通信链路作为线束添加到圆圈内部。基于并行坐标的节点选择器和基于ThemeRiver的时间切片器可以帮助用户专注于网络显示中的特定处理器组和时间切片。我们通过一个小用例来演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信