{"title":"Cosin","authors":"Jingya Zhou, Jianxi Fan, Jin Wang","doi":"10.1145/3337821.3337858","DOIUrl":null,"url":null,"abstract":"Influence Maximization (IM) has been extensively applied to many fields, and the viral marketing in today's online social networks (OSNs) is one of the most famous applications, where a group of seed users are selected to activate more users in a distributed cascading fashion. Many prior work explore the IM problem based on the assumption of given budget. However, the budget assumption does not hold in many practical scenarios, since companies might have no sufficient prior knowledge about the market. Moreover, companies prefer a moderately controllable viral marketing that allows them to adjust marketing decision according to the market reaction. In this paper, we propose a new problem, called Controllable social influence maximization (Cosin), to find a set of seed users inside a controllable scope to maximize the benefit given an expected return on investment (ROI). Like the IM problem, the Cosin problem is also NP-hard. We present a distributed multi-hop based framework for the influence estimation, and design a (1/2 + ϵ)-approximate algorithm based on the proposed framework. Moreover, we further present a distributed implementation to accelerate the execution of algorithm for large-scale social networks. Extensive experiments with a billion-scale social network indicate that the proposed algorithms outperform state-of-the-art algorithms in both benefit and running time.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Influence Maximization (IM) has been extensively applied to many fields, and the viral marketing in today's online social networks (OSNs) is one of the most famous applications, where a group of seed users are selected to activate more users in a distributed cascading fashion. Many prior work explore the IM problem based on the assumption of given budget. However, the budget assumption does not hold in many practical scenarios, since companies might have no sufficient prior knowledge about the market. Moreover, companies prefer a moderately controllable viral marketing that allows them to adjust marketing decision according to the market reaction. In this paper, we propose a new problem, called Controllable social influence maximization (Cosin), to find a set of seed users inside a controllable scope to maximize the benefit given an expected return on investment (ROI). Like the IM problem, the Cosin problem is also NP-hard. We present a distributed multi-hop based framework for the influence estimation, and design a (1/2 + ϵ)-approximate algorithm based on the proposed framework. Moreover, we further present a distributed implementation to accelerate the execution of algorithm for large-scale social networks. Extensive experiments with a billion-scale social network indicate that the proposed algorithms outperform state-of-the-art algorithms in both benefit and running time.