Big data reduction using RBFNN: A predictive model for ECG waveform for eHealth platform integration

Nuno Pombo, N. Garcia, Virginie Felizardo, K. Bousson
{"title":"Big data reduction using RBFNN: A predictive model for ECG waveform for eHealth platform integration","authors":"Nuno Pombo, N. Garcia, Virginie Felizardo, K. Bousson","doi":"10.1109/HEALTHCOM.2014.7001815","DOIUrl":null,"url":null,"abstract":"The main challenge of big data processing includes the extraction of relevant information, from a high dimensionality of a wide variety of medical data by enabling analysis, discovery and interpretation. These data are a useful tool for helping to understand disease and to formulate predictive models in different areas and support different tasks, such as triage, evaluation of treatment, and monitoring. In this paper, a case study based on a predictive model using the radial basis function neural network (RBFNN) combined with a filtering technique aiming the estimation of electrocardiogram (ECG) waveform is presented. The proposed method revealed it suitability to support health care professionals on clinical decisions and practices.","PeriodicalId":269964,"journal":{"name":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HEALTHCOM.2014.7001815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The main challenge of big data processing includes the extraction of relevant information, from a high dimensionality of a wide variety of medical data by enabling analysis, discovery and interpretation. These data are a useful tool for helping to understand disease and to formulate predictive models in different areas and support different tasks, such as triage, evaluation of treatment, and monitoring. In this paper, a case study based on a predictive model using the radial basis function neural network (RBFNN) combined with a filtering technique aiming the estimation of electrocardiogram (ECG) waveform is presented. The proposed method revealed it suitability to support health care professionals on clinical decisions and practices.
基于RBFNN的大数据约简:用于电子健康平台集成的心电波形预测模型
大数据处理的主要挑战包括通过分析、发现和解释,从各种各样的高维度医疗数据中提取相关信息。这些数据是一个有用的工具,有助于了解疾病,在不同领域制定预测模型,并支持不同的任务,如分诊、治疗评估和监测。本文提出了一种基于径向基函数神经网络(RBFNN)与滤波技术相结合的预测模型,用于心电波形的估计。所提出的方法表明,它适合支持卫生保健专业人员的临床决策和实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信