Stability analysis of aperiodic messages scheduled in the dynamic segment of Flexray protocol

P. S. Sunil Kumar, L. Jenkins
{"title":"Stability analysis of aperiodic messages scheduled in the dynamic segment of Flexray protocol","authors":"P. S. Sunil Kumar, L. Jenkins","doi":"10.1109/ICCCNT.2012.6395866","DOIUrl":null,"url":null,"abstract":"In a cyber physical system like vehicles number of signals to be communicated in a network system has an increasing trend. More and more mechanical and hydraulic parts are replaced by electronic control units and infotainment and multimedia applications has increased in vehicles. Safety critical hard real time messages and aperiodic messages communicated between electronic control units have been increased in recent times. Flexray is a high bandwidth protocol consisting of static segment for supporting hard real time messages and a dynamic segment for transmitting soft and non real time messages. In this paper, a method to obtain the stability region for the random arrival of messages in each electronic control units which is scheduled in the dynamic segment of Flexray protocol is presented. Number of mini slots available in the dynamic segment of Flexray restricts the arrival rate of tasks to the micro controllers or the number of micro controllers connected to the Flexray bus. Stability region of mathematical model of the system is compared with the Flexray protocol simulation results.","PeriodicalId":364589,"journal":{"name":"2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCNT.2012.6395866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In a cyber physical system like vehicles number of signals to be communicated in a network system has an increasing trend. More and more mechanical and hydraulic parts are replaced by electronic control units and infotainment and multimedia applications has increased in vehicles. Safety critical hard real time messages and aperiodic messages communicated between electronic control units have been increased in recent times. Flexray is a high bandwidth protocol consisting of static segment for supporting hard real time messages and a dynamic segment for transmitting soft and non real time messages. In this paper, a method to obtain the stability region for the random arrival of messages in each electronic control units which is scheduled in the dynamic segment of Flexray protocol is presented. Number of mini slots available in the dynamic segment of Flexray restricts the arrival rate of tasks to the micro controllers or the number of micro controllers connected to the Flexray bus. Stability region of mathematical model of the system is compared with the Flexray protocol simulation results.
Flexray协议动态段非周期消息调度的稳定性分析
在像车辆这样的网络物理系统中,需要在网络系统中通信的信号数量有增加的趋势。越来越多的机械和液压部件被电子控制单元所取代,信息娱乐和多媒体应用在车辆中有所增加。近年来,电子控制单元之间通信的安全关键信息、实时信息和非周期性信息越来越多。Flexray是一个高带宽协议,由支持硬实时消息的静态段和传输软、非实时消息的动态段组成。本文给出了Flexray协议动态段中各电子控制单元随机到达消息的稳定区域的求解方法。Flexray动态段中可用的迷你插槽数量限制了微控制器任务的到达率或连接到Flexray总线的微控制器数量。将系统数学模型的稳定区域与Flexray协议的仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信