An Efficient Kernel KNN classifier for Activity Recognition on Smartphone

M. Abidine, B. Fergani
{"title":"An Efficient Kernel KNN classifier for Activity Recognition on Smartphone","authors":"M. Abidine, B. Fergani","doi":"10.1109/STA56120.2022.10019099","DOIUrl":null,"url":null,"abstract":"The real-life mobile sensing applications use mobile sensors integrated in smartphones to predict user's physical activities, and to detect an anomaly. The precision of the human activity recognition (HAR) system depends on extracted features and robustness of the training model. This study mainly proposed a new scheme SV-KNN based on kernel K-Nearest Neighbors using a compact training data based on the support vectors (SV) to identify the ongoing activity. To reduce the sensory features as the inputs for classifier, we used the Principal Component Analysis (PCA). Comparison of our system with existing classifiers shows the efficiency of SV-KNN approach in terms of accuracy and F-score.","PeriodicalId":430966,"journal":{"name":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA56120.2022.10019099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The real-life mobile sensing applications use mobile sensors integrated in smartphones to predict user's physical activities, and to detect an anomaly. The precision of the human activity recognition (HAR) system depends on extracted features and robustness of the training model. This study mainly proposed a new scheme SV-KNN based on kernel K-Nearest Neighbors using a compact training data based on the support vectors (SV) to identify the ongoing activity. To reduce the sensory features as the inputs for classifier, we used the Principal Component Analysis (PCA). Comparison of our system with existing classifiers shows the efficiency of SV-KNN approach in terms of accuracy and F-score.
智能手机活动识别的高效核KNN分类器
现实生活中的移动传感应用使用集成在智能手机中的移动传感器来预测用户的身体活动,并检测异常。人体活动识别(HAR)系统的精度取决于提取的特征和训练模型的鲁棒性。本研究主要提出了一种基于核k近邻的SV- knn方案,利用基于支持向量(SV)的压缩训练数据来识别正在进行的活动。为了减少作为分类器输入的感官特征,我们使用了主成分分析(PCA)。将我们的系统与现有分类器进行比较,表明了SV-KNN方法在准确率和f分数方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信