Kernel Selection for Modal Linear Regression: Optimal Kernel and IRLS Algorithm

Ryoya Yamasaki, Toshiyuki Tanaka
{"title":"Kernel Selection for Modal Linear Regression: Optimal Kernel and IRLS Algorithm","authors":"Ryoya Yamasaki, Toshiyuki Tanaka","doi":"10.1109/ICMLA.2019.00110","DOIUrl":null,"url":null,"abstract":"Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: \"which kernel achieves smaller error?\" and \"which kernel is computationally efficient?\". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: "which kernel achieves smaller error?" and "which kernel is computationally efficient?". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.
模态线性回归的核选择:最优核和IRLS算法
模态线性回归(MLR)是一种获得条件模态预测器作为线性模型的方法。我们从“哪个内核误差更小”和“哪个内核计算效率更高”两个角度研究MLR的核选择。首先,我们证明了在最小化结果MLR参数的渐近均方误差的意义上,双权核是最优的。这一结果来源于我们对MLR的渐近统计行为的精细分析。其次,给出了保证迭代重加权最小二乘算法收敛的核类,并特别证明了具有Epanechnikov核的迭代重加权最小二乘算法在有限次迭代中终止。仿真研究经验证明,使用双权核具有较好的估计精度,使用Epanechnikov核具有较高的计算效率。我们的研究结果通过提供核选择指南,改进了现有研究通常坚持使用高斯核和专门针对它的模态EM算法的MLR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信