{"title":"Kernel Selection for Modal Linear Regression: Optimal Kernel and IRLS Algorithm","authors":"Ryoya Yamasaki, Toshiyuki Tanaka","doi":"10.1109/ICMLA.2019.00110","DOIUrl":null,"url":null,"abstract":"Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: \"which kernel achieves smaller error?\" and \"which kernel is computationally efficient?\". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: "which kernel achieves smaller error?" and "which kernel is computationally efficient?". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.