Ways to Improve the Intelligence of Algorithms for Optimal Load Distribution at CHP Plants With Complex Equipment Composition

E. Arakelyan, F. Pashchenko, A. Andryushin, A. Kosoy, Y. Yagupova, M. S. Leonov
{"title":"Ways to Improve the Intelligence of Algorithms for Optimal Load Distribution at CHP Plants With Complex Equipment Composition","authors":"E. Arakelyan, F. Pashchenko, A. Andryushin, A. Kosoy, Y. Yagupova, M. S. Leonov","doi":"10.1109/MLSD49919.2020.9247651","DOIUrl":null,"url":null,"abstract":"In this work, the research team reviewed problems and presented solutions integration methods, deep learning and artificial intelligence libraries, in modern software and hardware complexes for solving problems of optimum allocation of the current heat and power production in CHP plants with complex equipment connected with the necessity of considering a large number of constraints and handling large numbers of parameters. A variant of building an intelligent system is proposed, which, in addition to a number of intelligent functions, aims to evaluate immeasurable or poorly measured parameters quantitatively, identify the current technical condition of the equipment and recommend either a solution available in the database, or conduct new calculations.","PeriodicalId":103344,"journal":{"name":"2020 13th International Conference \"Management of large-scale system development\" (MLSD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference \"Management of large-scale system development\" (MLSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSD49919.2020.9247651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the research team reviewed problems and presented solutions integration methods, deep learning and artificial intelligence libraries, in modern software and hardware complexes for solving problems of optimum allocation of the current heat and power production in CHP plants with complex equipment connected with the necessity of considering a large number of constraints and handling large numbers of parameters. A variant of building an intelligent system is proposed, which, in addition to a number of intelligent functions, aims to evaluate immeasurable or poorly measured parameters quantitatively, identify the current technical condition of the equipment and recommend either a solution available in the database, or conduct new calculations.
提高设备结构复杂的热电联产电厂负荷优化分配算法智能化的途径
在这项工作中,研究小组回顾了问题并提出了解决方案,集成方法,深度学习和人工智能库,在现代软件和硬件综合体中,解决具有复杂设备的热电联产电厂当前热电生产的优化分配问题,需要考虑大量约束和处理大量参数。提出了构建智能系统的一种变体,除了一些智能功能外,其目的是定量评估不可测量或测量不良的参数,识别设备的当前技术状况,并推荐数据库中可用的解决方案,或进行新的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信