Measuring and Mitigating Bias in AI-Chatbots

Hedin Beattie, Lanier A Watkins, William H. Robinson, A. Rubin, Shari Watkins
{"title":"Measuring and Mitigating Bias in AI-Chatbots","authors":"Hedin Beattie, Lanier A Watkins, William H. Robinson, A. Rubin, Shari Watkins","doi":"10.1109/ICAA52185.2022.00023","DOIUrl":null,"url":null,"abstract":"The use of artificial intelligence (AI) to train conversational chatbots in the nuances of human interactions raises the concern of whether chatbots will demonstrate prejudice similar to that of humans, and thus require bias training. Ideally, a chatbot is void of racism, sexism, or any other offensive speech, however several well-known public instances indicate otherwise (e.g., Microsoft Taybot).In this paper, we explore the mechanisms of how open source conversational chatbots can learn bias, and we investigate potential solutions to mitigate this learned bias. To this end, we developed the Chatbot Bias Assessment Framework to measure bias in conversational chatbots, and then we devised an approach based on counter-stereotypic imagining to reduce this bias. This approach is non-intrusive to the chatbot, since it does not require altering any AI code or deleting any data from the original training dataset.","PeriodicalId":206047,"journal":{"name":"2022 IEEE International Conference on Assured Autonomy (ICAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Assured Autonomy (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA52185.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The use of artificial intelligence (AI) to train conversational chatbots in the nuances of human interactions raises the concern of whether chatbots will demonstrate prejudice similar to that of humans, and thus require bias training. Ideally, a chatbot is void of racism, sexism, or any other offensive speech, however several well-known public instances indicate otherwise (e.g., Microsoft Taybot).In this paper, we explore the mechanisms of how open source conversational chatbots can learn bias, and we investigate potential solutions to mitigate this learned bias. To this end, we developed the Chatbot Bias Assessment Framework to measure bias in conversational chatbots, and then we devised an approach based on counter-stereotypic imagining to reduce this bias. This approach is non-intrusive to the chatbot, since it does not require altering any AI code or deleting any data from the original training dataset.
人工智能聊天机器人的测量和减轻偏见
使用人工智能(AI)来训练会话聊天机器人了解人类互动的细微差别,引发了人们的担忧,即聊天机器人是否会表现出与人类相似的偏见,因此需要进行偏见训练。理想情况下,聊天机器人是没有种族主义、性别歧视或任何其他攻击性言论的,然而,一些众所周知的公开实例表明情况并非如此(例如,微软的Taybot)。在本文中,我们探讨了开源会话聊天机器人如何学习偏见的机制,并研究了减轻这种习得偏见的潜在解决方案。为此,我们开发了聊天机器人偏见评估框架来衡量会话聊天机器人的偏见,然后我们设计了一种基于反刻板印象想象的方法来减少这种偏见。这种方法对聊天机器人来说是非侵入性的,因为它不需要修改任何AI代码或从原始训练数据集中删除任何数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信