Detection of Spikes with Multiple Layer Perceptron Network Structures

Y. Kutlu, Y. Isler, D. Kuntalp
{"title":"Detection of Spikes with Multiple Layer Perceptron Network Structures","authors":"Y. Kutlu, Y. Isler, D. Kuntalp","doi":"10.1109/SIU.2006.1659693","DOIUrl":null,"url":null,"abstract":"In this work, the spikes in the electroencephalogram (EEG) signals are analyzed by using artificial neural networks (ANN). Multiple layer perceptron (MLP) networks utilizing between 3 and 15 hidden neurons are used in the network architecture. For training the MLP network backpropagation algorithm, backpropagation with adaptive learning rate, Levenberg-Marquardt (LM) algorithm, early stopping and regularization methods are used. Principal components of feature vectors obtained from 41 consecutive sample values of each peak are used for training the networks. Performances of classifiers are examined for two cases depending on both sensitivity-specificity and sensitivity-selectivity properties","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, the spikes in the electroencephalogram (EEG) signals are analyzed by using artificial neural networks (ANN). Multiple layer perceptron (MLP) networks utilizing between 3 and 15 hidden neurons are used in the network architecture. For training the MLP network backpropagation algorithm, backpropagation with adaptive learning rate, Levenberg-Marquardt (LM) algorithm, early stopping and regularization methods are used. Principal components of feature vectors obtained from 41 consecutive sample values of each peak are used for training the networks. Performances of classifiers are examined for two cases depending on both sensitivity-specificity and sensitivity-selectivity properties
基于多层感知器网络结构的尖峰检测
本文利用人工神经网络(ANN)对脑电图(EEG)信号中的峰值进行了分析。多层感知器(MLP)网络使用3到15个隐藏神经元。对于MLP网络反向传播算法的训练,采用了自适应学习率反向传播、Levenberg-Marquardt (LM)算法、早期停止和正则化方法。从每个峰值的41个连续样本值中获得特征向量的主成分用于训练网络。根据敏感性-特异性和敏感性-选择性特性,对分类器的性能进行了两种情况的检查
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信